Skip to main content
Log in

The transcriptomic landscape of caudal cell mass in different developmental stages of the chick embryo

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

The caudal cell mass (CCM) is an aggregate of undifferentiated pluripotent cells and the main player in secondary neurulation. Previous studies have elucidated the dynamic fate of the multipotent cell lineages, with a recent interest in the neuromesodermal progenitors. However, a transcriptomic analysis of the CCM during secondary neurulation has not been performed yet.

Methods

We analyzed RNA sequencing data of CCM samples at three different developmental stages of chicken embryos; HH16 (largest CCM phase), HH20 (secondary neural tube formation phase), and HH28 (degeneration phase).

Results

The transcriptomic profiles were clearly distinguishable according to developmental stage, and HH20 was shown to have not only intermediate, but also unique properties in secondary neurulation. A total of 10,666 differentially expressed genes, including FGF18 and GDF11, were identified and enriched in several gene ontologies related to embryogenesis or organogenesis. We also found that genes encoding transcription factors, such as TWIST2, IRX4, HOXB4, HOXD13, LIN28A, CDX4, and Brachyury, were among the top-ranked differentially expressed genes.

Conclusion

Through transcriptomic profiling, we provided a picture of the developmental process of the CCM. We identified several key molecules or pathways involved in secondary neurulation and the pathogenesis of related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Griffith CM, Wiley MJ (1990) Distribution of cell surface glycoconjugates during secondary neurulation in the chick embryo. Anat Rec 226:81–90

    Article  CAS  PubMed  Google Scholar 

  2. Gajović S, Kostović-Knezević L, Svajger A (1989) Origin of the notochord in the rat embryo tail. Anat Embryol (Berl) 179:305–310

    Article  Google Scholar 

  3. Švajger A, Kostović-Knežević L, Bradamante Ž, Wrischer M (1985) Tall gut formation in the rat embryo. Wilehm Roux Arch Dev Biol 194:429–432

    Article  Google Scholar 

  4. Henrique D, Abranches E, Verrier L, Storey KG (2015) Neuromesodermal progenitors and the making of the spinal cord. Development 142:2864–2875

    Article  CAS  PubMed  Google Scholar 

  5. Garriock RJ, Chalamalasetty RB, Kennedy MW, Canizales LC, Lewandoski M, Yamaguchi TP (2015) Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation. Development 142:1628–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaker MR, Lee JH, Kim KH, Ban S, Kim VJ, Kim JY, Lee JY, Sun W (2021) Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. Life Sci 282:119393

    Article  CAS  PubMed  Google Scholar 

  7. Yang HJ, Wang KC, Chi JG, Lee MS, Lee YJ, Kim SK, Cho BK (2003) Neural differentiation of caudal cell mass (secondary neurulation) in chick embryos: Hamburger and Hamilton Stages 16–45. Brain Res Dev Brain Res 142:31–36

    Article  CAS  PubMed  Google Scholar 

  8. Schoenwolf GC (1981) Morphogenetic processes involved in the remodeling of the tail region of the chick embryo. Anat Embryol (Berl) 162:183–197

    Article  CAS  Google Scholar 

  9. Choi S, Kim KH, Kim SK, Wang KC, Lee JY (2021) Three-dimensional visualization of secondary neurulation in chick embryos using microCT. Dev Dyn

  10. Lee JY, Lee ES, Kim SP, Lee MS, Phi JH, Kim SK, Hwang YI, Wang KC (2017) Neurosphere formation potential resides not in the caudal cell mass, but in the secondary neural tube. Int J Dev Biol 61:545–550

    Article  CAS  PubMed  Google Scholar 

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  13. Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  14. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  17. Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chae YK, Chang S, Ko T, Anker J, Agte S, Iams W, Choi WM, Lee K, Cruz M (2018) Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep 8:2918

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, Thiery JP (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6:1279–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY (2019) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res 47:D33–D38

    Article  CAS  PubMed  Google Scholar 

  21. Agopian AJ, Bhalla AD, Boerwinkle E, Finnell RH, Grove ML, Hixson JE, Shimmin LC, Sewda A, Stuart C, Zhong Y, Zhu H, Mitchell LE (2013) Exon sequencing of PAX3 and T (brachyury) in cases with spina bifida. Birth Defects Res A Clin Mol Teratol 97:597–601

    CAS  PubMed  Google Scholar 

  22. Aguirre CE, Murgan S, Carrasco AE, López SL (2013) An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis. PLoS ONE 8:e54777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fontanella F, van Maarle MC, Robles de Medina P, Oostra RJ, van Rijn RR, Pajkrt E, Bilardo CM (2016) Prenatal evidence of persistent notochord and absent sacrum caused by a mutation in the T (Brachyury) Gene. Case Rep Obstet Gynecol 2016:7625341

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, Guo AY (2020) hTFtarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics 18:120–128

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: Reviews3005

  26. Takata N, Sakakura E, Eiraku M, Kasukawa T, Sasai Y (2017) Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism. Nat Commun 8:1339

    Article  PubMed  PubMed Central  Google Scholar 

  27. Joshi P, Darr AJ, Skromne I (2019) CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 449:132–142

    Article  CAS  PubMed  Google Scholar 

  28. Karabagli H, Karabagli P, Ladher RK, Schoenwolf GC (2002) Comparison of the expression patterns of several fibroblast growth factors during chick gastrulation and neurulation. Anat Embryol (Berl) 205:365–370

    Article  CAS  Google Scholar 

  29. Smith CA, Sinclair AH (2001) Sex determination in the chicken embryo. J Exp Zool 290:691–699

    Article  CAS  PubMed  Google Scholar 

  30. Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El Omari K, Jefferis J, Bentham J, Taylor JM, Schneider JE, Arnold SJ, Johnson P, Tymowska-Lalanne Z, Stammers D, Clarke K, Neubauer S, Morris A, Brown SD, Shaw-Smith C, Cama A, Capra V, Ragoussis J, Constam D, Seidah NG, Prat A, Bhattacharya S (2008) VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev 22:1465–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsuda T, Iwai N, Deguchi E, Kimura O, Ono S, Furukawa T, Sasaki Y, Fumino S, Kubota Y (2011) PCSK5 and GDF11 expression in the hindgut region of mouse embryos with anorectal malformations. Eur J Pediatr Surg 21:238–241

    Article  CAS  PubMed  Google Scholar 

  32. Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  CAS  PubMed  Google Scholar 

  33. Hostikka SL, Gong J, Carpenter EM (2009) Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants. Int J Biol Sci 5:397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandeville I, Aubin J, LeBlanc M, Lalancette-Hébert M, Janelle MF, Tremblay GM, Jeannotte L (2006) Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Santa BP, Roberts DJ (2002) Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development 129:551–561

    Article  Google Scholar 

  36. Aires R, de Lemos L, Nóvoa A, Jurberg AD, Mascrez B, Duboule D, Mallo M (2019) Tail bud progenitor activity relies on a network comprising Gdf11, Lin28, and Hox13 genes. Dev Cell 48:383-395.e388

    Article  CAS  PubMed  Google Scholar 

  37. Barak H, Preger-Ben Noon E, Reshef R (2012) Comparative spatiotemporal analysis of Hox gene expression in early stages of intermediate mesoderm formation. Dev Dyn 241:1637–1649

    Article  CAS  PubMed  Google Scholar 

  38. Gould A, Itasaki N, Krumlauf R (1998) Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21:39–51

    Article  CAS  PubMed  Google Scholar 

  39. Sharpe J, Nonchev S, Gould A, Whiting J, Krumlauf R (1998) Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 17:1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, Kondoh H (2011) Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470:394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang N, Wu N, Zhang L, Zhao Y, Liu J, Liang X, Ren X, Li W, Chen W, Dong S, Zhao S, Lin J, Xiang H, Xue H, Chen L, Sun H, Zhang J, Shi J, Zhang S, Lu D, Wu X, Jin L, Ding J, Qiu G, Wu Z, Lupski JR, Zhang F (2018) TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet 28:539–547

    Article  PubMed Central  Google Scholar 

  42. Gentsch George E, Owens Nick DL, Martin Stephen R, Piccinelli P, Faial T, Trotter Matthew WB, Gilchrist Michael J, Smith James C (2013) In vivo T-Box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep 4:1185–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pennimpede T, Proske J, König A, Vidigal JA, Morkel M, Bramsen JB, Herrmann BG, Wittler L (2012) In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev Biol 372:55–67

    Article  CAS  PubMed  Google Scholar 

  44. Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799

    Article  CAS  PubMed  Google Scholar 

  45. Cai C, Shi O (2014) Genetic evidence in planar cell polarity signaling pathway in human neural tube defects. Front Med 8:68–78

    Article  PubMed  Google Scholar 

  46. Copp AJ, Stanier P, Greene ND (2013) Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 12:799–810

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, Finnell RH (2010) Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A 152A:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis A-K, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G, On behalf of the EMTIA (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352

    Article  PubMed  Google Scholar 

  49. Gonzalez-Gobartt E, Allio G, Bénazéraf B, Martí E (2021) In vivo analysis of the mesenchymal-to-epithelial transition during chick secondary neurulation. In: Campbell K, Theveneau E (eds) The epithelial-to mesenchymal transition: methods and protocols. Springer, US, New York, NY, pp 183–197

    Chapter  Google Scholar 

  50. Kim HY, Jackson TR, Davidson LA (2017) On the role of mechanics in driving mesenchymal-to-epithelial transitions. Semin Cell Dev Biol 67:113–122

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. 2021M3E5D9021884). This study was also supported by grant No. 04–20190430 from the Seoul National University Hospital Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Eun Sun Lee, Veronica Jihyun Kim, Saet Pyoul Kim, and Saeli Ban. Data analysis was conducted by Seungbok Lee. The first draft of the manuscript was written by Seungbok Lee and Kyung Hyun Kim. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ji Yeoun Lee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 42 KB)

Supplementary file2 (XLSX 2648 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, K.H., Lee, E.S. et al. The transcriptomic landscape of caudal cell mass in different developmental stages of the chick embryo. Childs Nerv Syst 38, 2101–2111 (2022). https://doi.org/10.1007/s00381-022-05675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05675-5

Keywords

Navigation