Skip to main content

Advertisement

Log in

Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Peritumoral brain edema (PTBE) is mediated by blood-brain barrier breakdown. PTBE results from interstitial vasogenic brain edema due to vascular endothelial growth factor and other inflammatory products of brain tumors. Glucocorticoids (GCs) are the mainstay for treatment of PTBE despite significant systemic side effects. GCs are thought to affect multiple cell types in the edematous brain. Here, we review preclinical studies of GC effects on edematous brain and review mechanisms underlying GC action on tumor cells, endothelial cells, and astrocytes. GCs may reduce tumor cell viability and suppress vascular endothelial growth factor (VEGF) production in tumor cells. Modulation of expression and distribution of tight junction proteins occludin, claudin-5, and ZO-1 in endothelial cells likely plays a central role in GC action on endothelial cells. GCs may also have an effect on astrocyte angiopoietin production and limited effect on astrocyte aquaporin. A better understanding of these molecular mechanisms may lead to the development of novel therapeutics for management of PTBE with a better side effect profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berkman RA, Merrill MJ, Reinhold WC, et al. (1993) Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91:153–159. doi:10.1172/JCI116165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strugar J, Rothbart D, Harrington W, Criscuolo GR (1994) Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 81:560–566. doi:10.3171/jns.1994.81.4.0560

    Article  CAS  PubMed  Google Scholar 

  3. Gerstner ER, Duda DG, di Tomaso E, et al. (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236. doi:10.1038/nrclinonc.2009.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ananthnarayan S, Bahng J, Roring J, et al. (2008) Time course of imaging changes of GBM during extended bevacizumab treatment. J Neuro-Oncol 88:339–347. doi:10.1007/s11060-008-9573-x

    Article  Google Scholar 

  5. Prados M, Strowger B, Feindel W (1945) Studies on cerebral edema; reaction of the brain to exposure to air; physiologic changes. Arch Neurol Psychiatr 54:290–300

    Article  CAS  Google Scholar 

  6. Vecht CJ, Hovestadt A, Verbiest HB, et al. (1994) Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: a randomized study of doses of 4, 8, and 16 mg per day. Neurology 44:675–680. doi:10.1212/WNL.44.4.675

    Article  CAS  PubMed  Google Scholar 

  7. Dietrich J, Rao K, Pastorino S, Kesari S (2011) Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol 4(2):233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veldhuijzen van Zanten SEM, Cruz O, Kaspers GJL, et al. (2016) State of affairs in use of steroids in diffuse intrinsic pontine glioma: an international survey and a review of the literature. J Neuro-Oncol 128:387–394. doi:10.1007/s11060-016-2141-x

    Article  CAS  Google Scholar 

  9. Marantidou A, Levy C, Duquesne A, et al. (2010) Steroid requirements during radiotherapy for malignant gliomas. J Neuro-Oncol 100:89–94. doi:10.1007/s11060-010-0142-8

    Article  CAS  Google Scholar 

  10. Ryken TC, McDermott M, Robinson PD, et al. (2010) The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol 96:103–114. doi:10.1007/s11060-009-0057-4

    Article  CAS  Google Scholar 

  11. Shields LBE, Shelton BJ, Shearer AJ, et al. (2015) Dexamethasone administration during definitive radiation and temozolomide renders a poor prognosis in a retrospective analysis of newly diagnosed glioblastoma patients. Radiat Oncol 10:222. doi:10.1186/s13014-015-0527-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pitter KL, Tamagno I, Alikhanyan K, et al. (2016) Corticosteroids compromise survival in glioblastoma. Brain 139:1458–1471. doi:10.1093/brain/aww046

    Article  PubMed  Google Scholar 

  13. Barnes PJ (2005) Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin N Am 25:451–468. doi:10.1016/j.iac.2005.05.003

    Article  Google Scholar 

  14. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 572:557–572

    Article  Google Scholar 

  15. Chandler Maler BA, Yamamoto KRVL (1983) DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33:489–499

    Article  PubMed  Google Scholar 

  16. Luisi BF, Xu WX, Otwinowski Z, et al. (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505. doi:10.1038/352497a0

    Article  CAS  PubMed  Google Scholar 

  17. Ohnishi T, Sher P, Posner J, Shapiro WR (1990) Capillary permeability factor secreted by malignant brain tumor. J Neurosurg 72:245–251

    Article  CAS  PubMed  Google Scholar 

  18. Bruce JN, Criscuolo GR, Merrill MJ, et al. (1987) Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone. J Neurosurg 67:880–884. doi:10.3171/jns.1987.67.6.0880

    Article  CAS  PubMed  Google Scholar 

  19. Weissman DE, Stewart C (1988) Experimental drug therapy of peritumoral brain edema. J Neuro-Oncol 6:339–342. doi:10.1007/BF00177429

    Article  CAS  Google Scholar 

  20. Reichman H, Farrel C, Maestro R (1986) Effects of steroids and nonsteroid anti-inflammatory agents on vascular permeability in a rat glioma model. J Neurosurg 65:233–237

    Article  CAS  PubMed  Google Scholar 

  21. Nicolaides NC, Galata Z, Kino T, et al. (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75:1–12. doi:10.1016/j.steroids.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  22. Mittelstadt PR, Ashwell JD (2001) Inhibition of AP-1 by the glucocorticoid-inducible protein GILZ. J Biol Chem 276:29603–29610. doi:10.1074/jbc.M101522200

    Article  CAS  PubMed  Google Scholar 

  23. Ayroldi E, Riccardi C (2009) Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 23:3649–3658. doi:10.1096/fj.09-134684

    Article  CAS  PubMed  Google Scholar 

  24. Newton R (2014) Anti-inflammatory glucocorticoids: changing concepts. Eur J Pharmacol 724:231–236. doi:10.1016/j.ejphar.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  25. Scheinman R, Gualberto A, Jewell C, et al (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. PubMed-NCBI. http://proxy.library.upenn.edu:2084/pubmed?otool=upennlib&term=Scheinman+RI,+Gualberto + A,+Jewell + CM,+Cidlowski + JA,+Baldwin + Jr + AS + 1995 + Characterization + of + mechanisms + involved + in + transrepression + of + NF-_B + by + activated + glucocorticoid + receptors. + Mol + Cell + Bio. Accessed 10 May 2016

  26. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A 91:752–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reichardt HM, Tuckermann JP, Vujic M, et al. (2001) Repression of in inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 20:7168–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reichardt HM, Kaestner KH, Tuckermann J, et al. (1998) DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541. doi:10.1016/S0092-8674(00)81183-6

    Article  CAS  PubMed  Google Scholar 

  29. Plate K, Breier G, Weich H, Risau W (1992) Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 355:242–244. doi:10.1038/355242a0

    Article  Google Scholar 

  30. Machein MR, Kullmer J, Fiebich BL, et al. (1999) Vascular endothelial growth factor expression, vascular volume, and, capillary permeability in human brain tumors. (Human. Neurosurgery 44:732–740 discussion 740–1

    Article  CAS  PubMed  Google Scholar 

  31. Heiss JD, Papavassiliou E, Merrill MJ, et al. (1996) Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest 98:1400–1408. doi:10.1172/JCI118927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 360:40–46

    Article  Google Scholar 

  33. Scheinman R, Gualberto A, Jewell C, et al. (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15(2):943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaup B, Schindler I, Knupfer H, et al. (2001) Time-dependent inhibition of glioblastoma cell proliferation by dexamethasone. J Neuro-Oncol 51:105–110. doi:10.1023/A:1010684921099

    Article  CAS  Google Scholar 

  35. Fan Z, Sehm T, Rauh M, et al. (2014) Dexamethasone alleviates tumor-associated brain damage and angiogenesis. PLoS One 9:e93264. doi:10.1371/journal.pone.0093264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kloosterhof NK, de Rooi JJ, Kros M, et al. (2013) Molecular subtypes of glioma identified by genome-wide methylation profiling. Genes Chromosomes Cancer 52:665–674. doi:10.1002/gcc.22062

    CAS  PubMed  Google Scholar 

  37. Li A, Walling J, Ahn S, et al. (2009) Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res 69:2091–2099. doi:10.1158/0008-5472.CAN-08-2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fletcher JW, George EA, Henry RE, Donati RM (1975) Brain scans, dexamethasone therapy, and brain tumors. JAMA 232:1261–1263

    Article  CAS  PubMed  Google Scholar 

  39. Das A, Banik NL, Patel SJ, Ray SK (2004) Dexamethasone protected human glioblastoma U87MG cells from temozolomide induced apoptosis by maintaining Bax:Bcl-2 ratio and preventing proteolytic activities. Mol Cancer. doi:10.1186/1476-4598-3-36

    PubMed  PubMed Central  Google Scholar 

  40. Sur P, Sribnick EA, Patel SJ, et al. (2005) Dexamethasone decreases temozolomide-induced apoptosis in human glioblastoma T98G cells. Glia 50:160–167. doi:10.1002/glia.20168

    Article  PubMed  Google Scholar 

  41. Wolff JE, Denecke J, Jürgens H (1996) Dexamethasone induces partial resistance to cisplatinum in C6 glioma cells. Anticancer Res 16:805–809

    CAS  PubMed  Google Scholar 

  42. Wolff JE, Jürgens H (1994) Dexamethasone induced partial resistance to methotrexate in C6-glioma cells. Anticancer Res 14:1585–1588

    CAS  PubMed  Google Scholar 

  43. Weller M, Schmidt C, Roth W, Dichgans J (1997) Chemotherapy of human malignant glioma: prevention of efficacy by dexamethasone? Neurology 48:1704–1709. doi:10.1212/WNL.48.6.1704

    Article  CAS  PubMed  Google Scholar 

  44. Qian YH, Xiao Q, Chen H, Xu J (2009) Dexamethasone inhibits camptothecin-induced apoptosis in C6-glioma via activation of Stat5/Bcl-xL pathway. Biochim Biophys Acta - Mol Cell Res 1793:764–771. doi:10.1016/j.bbamcr.2009.01.017

    Article  CAS  Google Scholar 

  45. Ueda S, Mineta T, Nakahara Y, et al. (2004) Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. J Neurosurg 101:659–663. doi:10.3171/jns.2004.101.4.0659

    Article  CAS  PubMed  Google Scholar 

  46. Fross RD, Warnke PC, Groothuis DR (1991) Blood flow and blood-to-tissue transport in 9 L gliosarcomas: the role of the brain tumor model in drug delivery research. J Neuro-Oncol 11:185–197

    Article  CAS  Google Scholar 

  47. Morris GM, Micca PL, Coderre JA (2004) The effect of dexamethasone on the uptake of p-boronophenylalanine in the rat brain and intracranial 9 L gliosarcoma. Appl Radiat Isot 61:917–921. doi:10.1016/j.apradiso.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  48. Straathof CSM, Van Den Bent MJ, Loos WJ, et al. (1999) The accumulation of topotecan in 9 L glioma and in brain parenchyma with and without dexamethasone administration. J Neuro-Oncol 42:117–122

    Article  CAS  Google Scholar 

  49. Straathof CSM, Van Den Bent MJ, Ma J, et al. (1998) The effect of dexamethasone on the uptake of cisplatin in 9 L glioma and the area of brain around tumor. J Neuro-Oncol 37:1–8. doi:10.1023/A:1005835212246

    Article  CAS  Google Scholar 

  50. Muldoon LL, Soussain C, Jahnke K, et al. (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305. doi:10.1200/JCO.2006.09.9861

    Article  CAS  PubMed  Google Scholar 

  51. Endo M, Jain RK, Witwer B, Brown D (1999) Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res 58:89–98. doi:10.1006/mvre.1999.2158

    Article  CAS  PubMed  Google Scholar 

  52. Hayashi Y, Edwards NA, Proescholdt MA, et al. (2007) Regulation and function of aquaporin-1 in glioma cells 1. Neoplasia 9:777–787. doi:10.1593/neo.07454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mehta D, Malik AB (2006) Review) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367. doi:10.1152/physrev.00012.2005

    Article  CAS  PubMed  Google Scholar 

  54. Papadopoulos MC, Saadoun S, Davies DC, Bell BA (2001) Emerging molecular mechanisms of brain tumour oedema. Br J Neurosurg 15:101–108. doi:10.1080/02688690120036775

    Article  CAS  PubMed  Google Scholar 

  55. Liebner S, Fischmann A, Rascher G, et al. (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331. doi:10.1007/s004010000180

    Article  CAS  PubMed  Google Scholar 

  56. Tstlkita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  Google Scholar 

  57. Huber JD, Egleton RD, Thomas P, et al. (2001) Review) Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 24:719–725

    Article  CAS  PubMed  Google Scholar 

  58. Hirase T, Staddon JM, Saitou M, et al. (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(Pt 1):1603–1613

    CAS  PubMed  Google Scholar 

  59. Ishihara H, Kubota H, Lindberg RLP, et al. (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor a 2 involves matrix metalloproteinases and tight junction proteins. Exp Neurol. doi:10.1097/NEN.0b013e31816fd622

    PubMed  Google Scholar 

  60. Papadopoulos MC, Saadoun S, Woodrow CJ, et al. (2001) Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol 27:384–395. doi:10.1046/j.0305-1846.2001.00341.x

    Article  CAS  PubMed  Google Scholar 

  61. Gu YT, Qin LJ, Qin X, Xu F (2009) The molecular mechanism of dexamethasone-mediated effect on the blood-brain tumor barrier permeability in a rat brain tumor model. Neurosci Lett. doi:10.1016/j.neulet.2008.12.047

    Google Scholar 

  62. Keil JM, Liu X, Antonetti DA (2013) Glucocorticoid induction of occludin expression and endothelial barrier requires transcription factor p54 NONO. NONO. Invest Ophthalmol Vis Sci 54:4007–4015. doi:10.1167/iovs.13-11980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Felinski EA, Cox AE, Phillips BE, Antonetti DA (2008) Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element. Exp Eye Res 86:867–878. doi:10.1016/j.exer.2008.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Förster C, Silwedel C, Golenhofen N, et al. (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565:475–486. doi:10.1113/jphysiol.2005.084038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Romero IA, Radewicz K, Jubin E, et al. (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344:112–116. doi:10.1016/S0304-3940(03)00348-3

    Article  CAS  PubMed  Google Scholar 

  66. Antonetti DA, Wolpert EB, DeMaio L, et al. (2002) Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J Neurochem 80:667–677. doi:10.1046/j.0022-3042.2001.00740.x

    Article  CAS  PubMed  Google Scholar 

  67. Förster C, Burek M, Romero IA, et al. (2008) Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 5867:1937–1949. doi:10.1113/jphysiol.2007.146852

    Article  CAS  Google Scholar 

  68. Murakami T, Frey T, Lin C, Antonetti DA (2012) Protein kinase C phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes 61:1573–1583. doi:10.2337/db11-1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murakami T, Felinski EA, Antonetti DA (2009) Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 284:21036–21046. doi:10.1074/jbc.M109.016766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoheisel D, Nitz T, Franke H, et al. (1998) Hydrocortisone reinforces the blood-brain properties in a serum free cell culture system. Biochem Biophys Res Commun 247:312–315. doi:10.1006/bbrc.1997.8051

    Article  CAS  PubMed  Google Scholar 

  71. Yuan SY, Rigor RR (2010) Methods for Measuring Permeability

  72. Elkouby-Naor L, Ben-Yosef T (2010) (Review/book) Functions of claudin tight junction proteins and their complex interactions in various physiological systems, 1st ed. Int Rev Cell Mol Biol. doi:10.1016/S1937-6448(10)79001-8

    PubMed  Google Scholar 

  73. Förster C, Waschke J, Burek M, et al. (2006) Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J Physiol 573:413–425. doi:10.1113/jphysiol.2006.106385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nitta T, Hata M, Gotoh S, et al. (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660. doi:10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wong V, Gumbiner BM (1997) Synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136:399–409. doi:10.1083/jcb.136.2.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saitou M, Fujimoto K, Doi Y, et al. (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harkness KA, Adamson P, Sussman J, et al. (2000) Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123:698–709. doi:10.1093/brain/123.4.698

    Article  PubMed  Google Scholar 

  78. Blecharz KG, Drenckhahn D, Forster CY (2008) Glucocorticoids increase VE-cadherin expression and cause cytoskeletal rearrangements in murine brain endothelial cEND cells. J Cereb Blood Flow Metab 28:1139–1149. doi:10.1038/jcbfm.2008.2

    Article  CAS  PubMed  Google Scholar 

  79. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  PubMed  Google Scholar 

  80. Lampugnani MG, Corada M, Caveda L, et al. (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin. J Cell Biol 129:203–217

    Article  CAS  PubMed  Google Scholar 

  81. Guan Y, Rubenstein NM, Failor KL, et al. (2004) Glucocorticoids control beta-catenin protein expression and localization through distinct pathways that can be uncoupled by disruption of signaling events required for tight junction formation in rat mammary epithelial tumor cells. Mol Endocrinol 18:214–227. doi:10.1210/me.2003-0014

    Article  CAS  PubMed  Google Scholar 

  82. Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Article  PubMed  Google Scholar 

  83. Avolio C, Filippi M, Tortorella C, et al. (2005) Serum MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in multiple sclerosis: relationships with different magnetic resonance imaging measures of disease activity during IFN-beta-1a treatment. Mult Scler 11:441–446. doi:10.1191/1352458505ms1193oa

    Article  CAS  PubMed  Google Scholar 

  84. Gijbels K, Galardy RE, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94:2177–2182. doi:10.1172/JCI117578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Förster C, Kahles T, Kietz S, Drenckhahn D (2007) Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J Physiol 580:937–949. doi:10.1113/jphysiol.2007.129007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yang JT, Lee TH, Lee IN, et al. (2011) Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir 153:2197–2203. doi:10.1007/s00701-011-1122-2

    Article  PubMed  Google Scholar 

  87. Liu X, Han Q, Sun R, Li Z (2008) Dexamethasone regulation of matrix metalloproteinase expression in experimental pneumococcal meningitis. Brain Res 1207:237–243. doi:10.1016/j.brainres.2008.01.106

    Article  CAS  PubMed  Google Scholar 

  88. Green JA, Tran CTH, Farrar JJ, et al. (2009) Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS One. doi:10.1371/journal.pone.0007277

    Google Scholar 

  89. Gardner J, Ghorpade A (2003) Review) Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system. J Neurosci Res 74:801–806. doi:10.1002/jnr.10835

    Article  CAS  PubMed  Google Scholar 

  90. Kröll S, El-Gindi J, Thanabalasundaram G, et al. (2009) Control of the blood-brain barrier by glucocorticoids and the cells of the neurovascular unit. Ann N Y Acad Sci 1165:228–239. doi:10.1111/j.1749-6632.2009.04040.x

    Article  PubMed  CAS  Google Scholar 

  91. Hamm S, Dehouck B, Kraus J, et al. (2004) Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315:157–166. doi:10.1007/s00441-003-0825-y

    Article  PubMed  Google Scholar 

  92. Verkman AS, Binder DK, Bloch O, et al. (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta-Biomembr 1758:1085–1093. doi:10.1016/j.bbamem.2006.02.018

    Article  CAS  Google Scholar 

  93. Saadoun S, Papadopoulos MC, Davies DC, et al. (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262–265. doi:10.1136/jnnp.72.2.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Manley GT, Fujimura M, Ma T, et al. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163. doi:10.1038/72256

    Article  CAS  PubMed  Google Scholar 

  95. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293. doi:10.1096/fj.04-1723fje

    CAS  PubMed  Google Scholar 

  96. Moon C, King LS, Agre P (1997) Aqp1 expression in erythroleukemia cells: genetic regulation of glucocorticoid and chemical induction. Am J Phys 273:C1562–C1570

    CAS  Google Scholar 

  97. Stoenoiu MS, Ni J, Verkaeren C, et al. (2003) Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. J Am Soc Nephrol 14:555–565

    Article  CAS  PubMed  Google Scholar 

  98. Liu H, Hooper SB, Armugam A, et al. (2003) Aquaporin gene expression and regulation in the ovine fetal lung. J Physiol 551:503–514. doi: 10.1113/jphysiol.2003.044875\rjphysiol.2003.044875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gu F, Hata R, Toku K, et al. (2003) Testosterone up-regulates aquaporin-4 expression in cultured astrocytes. J Neurosci Res 72:709–715. doi:10.1002/jnr.10603

    Article  CAS  PubMed  Google Scholar 

  100. Gunnarson E, Zelenina M, Aperia A (2004) Review) Regulation of brain aquaporins. Neuroscience 129:947–955. doi:10.1016/j.neuroscience.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  101. Du KX, Dong Y, Zhang Y, et al. (2015) Effects of dexamethasone on aquaporin-4 expression in brain tissue of rat with bacterial meningitis. Int J Clin Exp Pathol 8:3090–3096

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gu YT, Zhang H, Xue YX (2007) Dexamethasone treatment modulates aquaporin-4 expression after intracerebral hemorrhage in rats. Neurosci Lett 413:126–131. doi:10.1016/j.neulet.2006.11.072

    Article  CAS  PubMed  Google Scholar 

  103. Warth A, Simon P, Capper D, et al. (2007) Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res 85:1336–1346

    Article  CAS  PubMed  Google Scholar 

  104. Hori S, Ohtsuki S, Hosoya KI, et al. (2004) A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 89:503–513. doi:10.1111/j.1471-4159.2004.02343.x

    Article  CAS  PubMed  Google Scholar 

  105. Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown. Lab Investig 85:1189–1198. doi:10.1038/labinvest.3700325

    Article  CAS  PubMed  Google Scholar 

  106. Maisonpierre PC (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–6080

    Article  CAS  PubMed  Google Scholar 

  107. Kim H, Lee JM, Park JS, et al. (2008) Dexamethasone coordinately regulates angiopoietin-1 and VEGF: a mechanism of glucocorticoid-induced stabilization of blood-brain barrier. Biochem Biophys Res Commun 372:243–248. doi:10.1016/j.bbrc.2008.05.025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marsha Merrill, PhD, for discussions and historical insights. This study was funded by the intramural research program of the National Institute of Neurological Disorders and Stroke at the National Institutes of Health (NIH). This research was also made possible through the NIH Medical Research Scholars Program, a public-private partnership supported jointly by the NIH and generous contributions to the Foundation for the NIH. The authors thank Ethan Tyler from the Medical Arts Branch of the NIH Clinical Center for the illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Chittiboina.

Ethics declarations

No financial disclosures.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murayi, R., Chittiboina, P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 32, 2293–2302 (2016). https://doi.org/10.1007/s00381-016-3240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3240-x

Keywords

Navigation