Skip to main content

Advertisement

Log in

High Fib4 index in patients with suspected NASH is associated with elevation of chymase-dependent angiotensin II-forming activity in circulating mononuclear leucocytes

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Fatal hepatic disease is closely related to non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis (NASH). NASH is associated with cardiovascular events because it develops on the background of lifestyle-related diseases. Chymase-dependent angiotensin II-forming activity (dAIIFA) in circulating mononuclear leucocytes (CML) is a marker of local angiotensin II production and inflammation. This study investigated the association between CML chymase dAIIFA and NASH. Cardiovascular outpatients were recruited and the Fib4 index (F4I) was calculated. Patients with an F4I > 2.67 were classified into the high F4I group and these patients were strongly suspected to have NASH, while patients with an F4I < 1.30 were classified into the low F4I group. Patient background factors were compared between these groups. CML chymase dAIIFA was measured by ELISA using Nma/Dnp-modified angiotensin I. Among 499 patients, 16% were classified into the high F4I group. Compared with the low F4I group, the high F4I group had a significantly higher age, pancytopenia, more frequent diabetes mellitus, lower diastolic blood pressure, lower estimated glomerular filtration rate, higher brain natriuretic peptide, lower plasma aldosterone concentration, higher total AIIFA, higher CML chymase dAIIFA, and higher pulse wave velocity. Contrary to expectations, the body mass index, triglycerides, and low-density lipoprotein cholesterol were relatively low in the high F4I group. Many cardiovascular outpatients have a high F4I and can probably be categorized as NASH. The high F4I patients had few features of metabolic syndrome and were suspected to have elevated tissue chymase dAIIFA contributing to inflammation in the liver as well as in cardiovascular organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nishioji K, Sumida Y, Kamaguchi M, Mochizuki N, Kobayashi M, Nishimura T, Yamaguchi K, Itoh Y (2015) Prevalence of and risk factors for non-alcoholic fatty liver disease in a non-obese Japanese population, 2011–2012. J Gastroenterol 50:95–108

    Article  CAS  PubMed  Google Scholar 

  2. Eguchi Y, Hyogo H, Ono M, Mizuta T, Ono N, Fujimoto K, Chayama K, Saibara T, Jsg N (2012) Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol 47:586–595

    Article  CAS  PubMed  Google Scholar 

  3. Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T, Sarui H, Shimazaki M, Kato T, Okuda J, Ida K (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143:722–728

    Article  CAS  PubMed  Google Scholar 

  4. Hamabe A, Uto H, Imamura Y, Kusano K, Mawatari S, Kumagai K, Kure T, Tamai T, Moriuchi A, Sakiyama T, Oketani M, Ido A, Tsubouchi H (2011) Impact of cigarette smoking on onset of nonalcoholic fatty liver disease over a 10-year period. J Gastroenterol 46:769–778

    Article  CAS  PubMed  Google Scholar 

  5. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55:2005–2023

    Article  Google Scholar 

  6. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131

    Article  Google Scholar 

  7. Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34:274–285

    Article  CAS  Google Scholar 

  8. Musso G, Gambino R, Cassader M, Pagano G (2011) Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 43:617–649

    Article  PubMed  Google Scholar 

  9. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, Kechagias S (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44:865–873

    Article  CAS  Google Scholar 

  10. Lopez-Suarez A, Guerrero JM, Elvira-Gonzalez J, Beltran-Robles M, Canas-Hormigo F, Bascunana-Quirell A (2011) Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase. Eur J Gastroenterol Hepatol 23:1011–1017

    CAS  PubMed  Google Scholar 

  11. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology 34:745–750

    Article  CAS  PubMed  Google Scholar 

  12. Toblli JE, Munoz MC, Cao G, Mella J, Pereyra L, Mastai R (2008) ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 16:770–776

    Article  CAS  Google Scholar 

  13. Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, Hasegawa T, Tokusashi Y, Miyokawa N, Nakamura K (2004) Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40:1222–1225

    Article  CAS  PubMed  Google Scholar 

  14. Yokohama S, Tokusashi Y, Nakamura K, Tamaki Y, Okamoto S, Okada M, Aso K, Hasegawa T, Aoshima M, Miyokawa N, Haneda M, Yoneda M (2006) Inhibitory effect of angiotensin II receptor antagonist on hepatic stellate cell activation in non-alcoholic steatohepatitis. World J Gastroenterol 12:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L (2009) Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 15:942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arakawa K (1996) Serine protease angiotensin II systems. J Hypertens Suppl 14:S3–S7

    Article  CAS  PubMed  Google Scholar 

  17. Wei CC, Meng QC, Palmer R, Hageman GR, Durand J, Bradley WE, Farrell DM, Hankes GH, Oparil S, Dell'Italia LJ (1999) Evidence for angiotensin-converting enzyme- and chymase-mediated angiotensin II formation in the interstitial fluid space of the dog heart in vivo. Circulation 99:2583–2589

    Article  CAS  PubMed  Google Scholar 

  18. Takai S, Sakaguchi M, Jin D, Yamada M, Kirimura K, Miyazaki M (2001) Different angiotensin II-forming pathways in human and rat vascular tissues. Clin Chim Acta 305:191–195

    Article  CAS  PubMed  Google Scholar 

  19. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    CAS  PubMed  Google Scholar 

  20. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890

    Article  CAS  PubMed  Google Scholar 

  21. Koga T, Urata H, Inoue Y, Hoshino T, Okamoto T, Matsunaga A, Suzuki M, Miyazaki J, Ideishi M, Arakawa K, Saku K (2003) Human chymase expression in a mice induces mild hypertension with left ventricular hypertrophy. Hypertens Res 26:759–768

    Article  CAS  PubMed  Google Scholar 

  22. Mangiapane ML, Rauch AL, MacAndrew JT, Ellery SS, Hoover KW, Knight DR, Johnson HA, Magee WP, Cushing DJ, Buchholz RA (1994) Vasoconstrictor action of angiotensin I-convertase and the synthetic substrate (Pro11, D-Ala12)-angiotensin I. Hypertension 23:857–860

    Article  CAS  PubMed  Google Scholar 

  23. Schuh JR, Blehm DJ, Frierdich GE, McMahon EG, Blaine EH (1993) Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits. J Clin Invest 91:1453–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439

    Article  CAS  PubMed  Google Scholar 

  25. Nishimura H, Buikema H, Baltatu O, Ganten D, Urata H (1998) Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Am J Physiol 275:H1307–H1312

    CAS  PubMed  Google Scholar 

  26. Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94:2756–2767

    Article  CAS  PubMed  Google Scholar 

  27. Uehara Y, Urata H, Sasaguri M, Ideishi M, Sakata N, Tashiro T, Kimura M, Arakawa K (2000) Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension 35:55–60

    Article  CAS  PubMed  Google Scholar 

  28. Ihara M, Urata H, Kinoshita A, Suzumiya J, Sasaguri M, Kikuchi M, Ideishi M, Arakawa K (1999) Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension 33:1399–1405

    Article  CAS  PubMed  Google Scholar 

  29. Ihara M, Urata H, Shirai K, Ideishi M, Hoshino F, Suzumiya J, Kikuchi M, Arakawa K (2000) High cardiac angiotensin-II-forming activity in infarcted and non-infarcted human myocardium. Cardiology 94:247–253

    Article  CAS  PubMed  Google Scholar 

  30. Akasu M, Urata H, Kinoshita A, Sasaguri M, Ideishi M, Arakawa K (1998) Differences in tissue angiotensin II-forming pathways by species and organs in vitro. Hypertension 32:514–520

    Article  CAS  PubMed  Google Scholar 

  31. Hoshino F, Urata H, Inoue Y, Saito Y, Yahiro E, Ideishi M, Arakawa K, Saku K (2003) Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol 41(Suppl 1):S11–S18

    CAS  PubMed  Google Scholar 

  32. Komeda K, Jin D, Takai S, Hayashi M, Takeshita A, Shibayama Y, Tanigawa N, Miyazaki M (2008) Significance of chymase-dependent angiotensin II formation in the progression of human liver fibrosis. Hepatol Res 38:501–510

    Article  CAS  PubMed  Google Scholar 

  33. Takai S, Jin D (2018) Chymase inhibitor as a novel therapeutic agent for non-alcoholic steatohepatitis. Front Pharmacol 9:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takai S, Jin D, Sakaguchi M, Miyazaki M (1999) Chymase-dependent angiotensin II formation in human vascular tissue. Circulation 100:654–658

    Article  CAS  PubMed  Google Scholar 

  35. Okamura K, Okuda T, Shirai K, Urata H (2018) Positive correlation between blood pressure or heart rate and chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes measured by new ELISA. Clin Exp Hypertens 40:112–117

    Article  PubMed  Google Scholar 

  36. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, Nash Clinical Research N (2009) Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 7:1104–1112

    Article  CAS  Google Scholar 

  37. Sumida Y, Yoneda M, Hyogo H, Itoh Y, Ono M, Fujii H, Eguchi Y, Suzuki Y, Aoki N, Kanemasa K, Fujita K, Chayama K, Saibara T, Kawada N, Fujimoto K, Kohgo Y, Yoshikawa T, Okanoue T, Japan Study Group of Nonalcoholic Fatty Liver D (2012) Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol 12:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wada T, Zeniya M (2015) Background of the FIB-4 index in Japanese non-alcoholic fatty liver disease. Intern Med 54:127–132

    Article  PubMed  Google Scholar 

  39. Yoneda M, Imajo K, Eguchi Y, Fujii H, Sumida Y, Hyogo H, Ono M, Suzuki Y, Kawaguchi T, Aoki N, Sata M, Kanemasa K, Kohgo Y, Saibara T, Chayama K, Itoh Y, Yoshikawa T, Anzai K, Fujimoto K, Okanoue T, Nakajima A, Japan Study Group of Nonalcoholic Fatty Liver D (2013) Noninvasive scoring systems in patients with nonalcoholic fatty liver disease with normal alanine aminotransferase levels. J Gastroenterol 48:1051–1060

    Article  CAS  PubMed  Google Scholar 

  40. Sumida Y, Yoneda M, Hyogo H, Yamaguchi K, Ono M, Fujii H, Eguchi Y, Suzuki Y, Imai S, Kanemasa K, Fujita K, Chayama K, Yasui K, Saibara T, Kawada N, Fujimoto K, Kohgo Y, Okanoue T, Japan Study Group of Nonalcoholic Fatty Liver D (2011) A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol 46:257–268

    Article  CAS  PubMed  Google Scholar 

  41. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt AD, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP (2007) The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45:846–854

    Article  CAS  PubMed  Google Scholar 

  42. Fujii H, Enomoto M, Fukushima W, Tamori A, Sakaguchi H, Kawada N (2009) Applicability of BARD score to Japanese patients with NAFLD. Gut 58: 1566–1567 (author reply 1567)

    Article  CAS  PubMed  Google Scholar 

  43. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, M SS, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M, Investigators AC (2006) Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43:1317–1325

    Article  CAS  Google Scholar 

  44. Murakami K, Uehara Y, Abe S, Inoue Y, Ideishi M, Saku K, Urata H (2007) Positive correlation between chymase-like angiotensin II-forming activity in mononuclear cells and serum cholesterol level. J Cardiol 50:291–298

    PubMed  Google Scholar 

  45. Urata H, Strobel F, Ganten D (1994) Widespread tissue distribution of human chymase. J Hypertens Suppl 12:S17–S22

    CAS  PubMed  Google Scholar 

  46. Angulo P, Keach JC, Batts KP, Lindor KD (1999) Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30:1356–1362

    Article  CAS  Google Scholar 

  47. Maruichi M, Takai S, Sugiyama T, Ueki M, Oku H, Sakaguchi M, Okamoto Y, Muramatsu M, Ikeda T, Miyazaki M (2004) Role of chymase on growth of cultured canine Tenon's capsule fibroblasts and scarring in a canine conjunctival flap model. Exp Eye Res 79:111–118

    Article  CAS  PubMed  Google Scholar 

  48. Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Chayama K (2009) Deletion of angiotensin II type I receptor reduces hepatic steatosis. J Hepatol 50:1226–1235

    Article  CAS  PubMed  Google Scholar 

  49. Ljumovic D, Diamantis I, Alegakis AK, Kouroumalis EA (2004) Differential expression of matrix metalloproteinases in viral and non-viral chronic liver diseases. Clin Chim Acta 349:203–211

    Article  CAS  PubMed  Google Scholar 

  50. Casini A, Pinzani M, Milani S, Grappone C, Galli G, Jezequel AM, Schuppan D, Rotella CM, Surrenti C (1993) Regulation of extracellular matrix synthesis by transforming growth factor beta 1 in human fat-storing cells. Gastroenterology 105:245–253

    Article  CAS  PubMed  Google Scholar 

  51. Okamura K, Okuda T, Shirai K, Urata H (2019) Increase of chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes after acute myocardial infarction chymase activity after acute myocardial infarction. Heart Vessels. https://doi.org/10.1007/s00380-019-01352-x

    Article  PubMed  Google Scholar 

  52. Fujimi K, Uehara Y, Abe S, Kawamura A, Devarajan S, Miura S, Saku K, Urata H (2010) Homocysteine-induced oxidative stress upregulates chymase in mouse mastocytoma cells. Hypertens Res 33:149–154

    Article  CAS  PubMed  Google Scholar 

  53. Hirose A, Ono M, Saibara T, Nozaki Y, Masuda K, Yoshioka A, Takahashi M, Akisawa N, Iwasaki S, Oben JA, Onishi S (2007) Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 45:1375–1381

    Article  CAS  PubMed  Google Scholar 

  54. Guimaraes EL, Empsen C, Geerts A, van Grunsven LA (2010) Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol 52:389–397

    Article  CAS  PubMed  Google Scholar 

  55. Kato J, Koda M, Kishina M, Tokunaga S, Matono T, Sugihara T, Ueki M, Murawaki Y (2012) Therapeutic effects of angiotensin II type 1 receptor blocker, irbesartan, on non-alcoholic steatohepatitis using FLS-ob/ob male mice. Int J Mol Med 30:107–113

    CAS  PubMed  Google Scholar 

  56. Masubuchi S, Takai S, Jin D, Tashiro K, Komeda K, Li ZL, Otsuki Y, Okamura H, Hayashi M, Uchiyama K (2013) Chymase inhibitor ameliorates hepatic steatosis and fibrosis on established non-alcoholic steatohepatitis in hamsters fed a methionine- and choline-deficient diet. Hepatol Res 43:970–978

    Article  CAS  PubMed  Google Scholar 

  57. Miyaoka Y, Jin D, Tashiro K, Komeda K, Masubuchi S, Hirokawa F, Hayashi M, Takai S, Uchiyama K (2017) Chymase inhibitor prevents the development and progression of non-alcoholic steatohepatitis in rats fed a high-fat and high-cholesterol diet. J Pharmacol Sci 134:139–146

    Article  CAS  PubMed  Google Scholar 

  58. Sanyal AJ, Banas C, Sargeant C, Luketic VA, Sterling RK, Stravitz RT, Shiffman ML, Heuman D, Coterrell A, Fisher RA, Contos MJ, Mills AS (2006) Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43:682–689

    Article  PubMed  Google Scholar 

  59. Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M (2007) Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30:2940–2944

    Article  CAS  PubMed  Google Scholar 

  60. Nakahara T, Hyogo H, Yoneda M, Sumida Y, Eguchi Y, Fujii H, Ono M, Kawaguchi T, Imajo K, Aikata H, Tanaka S, Kanemasa K, Fujimoto K, Anzai K, Saibara T, Sata M, Nakajima A, Itoh Y, Chayama K, Okanoue T, Japan Study Group of Nonalcoholic Fatty Liver D (2014) Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol 49:1477–1484

    Article  CAS  Google Scholar 

  61. Reid AE (2001) Nonalcoholic steatohepatitis. Gastroenterology 121:710–723

    Article  CAS  PubMed  Google Scholar 

  62. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C, Arcaro G (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218

    Article  PubMed  Google Scholar 

  63. Abe M, Miyake T, Kuno A, Imai Y, Sawai Y, Hino K, Hara Y, Hige S, Sakamoto M, Yamada G, Kage M, Korenaga M, Hiasa Y, Mizokami M, Narimatsu H (2015) Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol 50:776–784

    Article  CAS  PubMed  Google Scholar 

  64. Kamada Y, Ono M, Hyogo H, Fujii H, Sumida Y, Mori K, Tanaka S, Yamada M, Akita M, Mizutani K, Fujii H, Yamamoto A, Takamatsu S, Yoshida Y, Itoh Y, Kawada N, Chayama K, Saibara T, Takehara T, Miyoshi E (2015) A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology 62:1433–1443

    Article  CAS  PubMed  Google Scholar 

  65. Le TA, Chen J, Changchien C, Peterson MR, Kono Y, Patton H, Cohen BL, Brenner D, Sirlin C, Loomba R, San Diego Integrated NRC (2012) Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 56:922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masaki K, Takaki S, Hyogo H, Kobayashi T, Fukuhara T, Naeshiro N, Honda Y, Nakahara T, Ohno A, Miyaki D, Murakami E, Nagaoki Y, Kawaoka T, Tsuge M, Hiraga N, Hiramatsu A, Imamura M, Kawakami Y, Aikata H, Ochi H, Takahashi S, Arihiro K, Chayama K (2013) Utility of controlled attenuation parameter measurement for assessing liver steatosis in Japanese patients with chronic liver diseases. Hepatol Res 43:1182–1189

    Article  PubMed  Google Scholar 

  67. Yoneda M, Yoneda M, Fujita K, Inamori M, Tamano M, Hiriishi H, Nakajima A (2007) Transient elastography in patients with non-alcoholic fatty liver disease (NAFLD). Gut 56:1330–1331

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Nao Totake and Mrs. Rieko Yoshida for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Okamura.

Ethics declarations

Conflict of interest

This work was supported by JSPS KAKENHI (Grants No. 21590916 and No. 26461118).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, K., Okuda, T., Takamiya, Y. et al. High Fib4 index in patients with suspected NASH is associated with elevation of chymase-dependent angiotensin II-forming activity in circulating mononuclear leucocytes. Heart Vessels 34, 1559–1569 (2019). https://doi.org/10.1007/s00380-019-01391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-019-01391-4

Keywords

Navigation