Skip to main content

Advertisement

Log in

Predictors of improvements in exercise capacity during cardiac rehabilitation in the recovery phase after coronary artery bypass graft surgery versus acute myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

This study aimed to elucidate the predictors of improvements in exercise capacity during cardiac rehabilitation (CR) in the recovery phase after coronary artery bypass graft surgery (CABG) versus acute myocardial infarction (AMI). We studied 152 patients (91 after AMI and 61 after CABG) who participated in a 3-month CR program. All patients underwent a cardiopulmonary exercise test, blood tests, maximal quadriceps isometric strength (QIS) measurement, and bioelectrical impedance body composition measurement at the beginning and end of the 3-month CR program. At baseline, the percentage of predicted peak oxygen uptake (%pred-PVO2), maximal QIS, and hemoglobin (Hb) were significantly lower, while C-reactive protein (CRP) was significantly higher, in the CABG than the AMI group. After the 3-month CR, %change in PVO2 (%ΔPVO2) was significantly greater in the CABG than the AMI group (18 ± 15% vs 11 ± 12%, P < 0.01). At univariate analysis, baseline plasma brain natriuretic peptide (BNP), %change in maximal QIS after CR (%Δ maximal QIS), and change in plasma hemoglobin (ΔHb) significantly correlated with %ΔPVO2 in the CABG group, whereas only baseline %pred-PVO2 did so in the AMI group. Multiple regression analysis revealed that the same factors were independent and significant predictors of %ΔPVO2 in the CABG and AMI groups. The predictors of improvements in exercise capacity after CR differed between patients after CABG or AMI. Specifically, in CABG patients both enhancing QIS and correcting anemia may contribute to greater improvements in exercise capacity after CR, while a more effective CR program should be designed for CABG patients with high baseline BNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Suaya JA, Stason WB, Ades PA, Normand SL, Shepard DS (2009) Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol 54:25–33

    Article  PubMed  Google Scholar 

  2. Witt BJ, Jacobsen SJ, Weston SA, Killian JM, Meverden RA, Allison TG, Reeder GS, Roger VL (2004) Cardiac rehabilitation after myocardial infarction in the community. J Am Coll Cardiol 44:988–996

    Article  PubMed  Google Scholar 

  3. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116:682–692

    Article  PubMed  Google Scholar 

  4. Ades PA (2001) Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med 345:892–902

    Article  CAS  PubMed  Google Scholar 

  5. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801

    Article  PubMed  Google Scholar 

  6. Kokkinos P, Myers J (2010) Exercise and physical activity: clinical outcomes and applications. Circulation 122:1637–1648

    Article  PubMed  Google Scholar 

  7. Vanhees L, Stevens A, Schepers D, Defoor J, Rademakers F, Fagard R (2004) Determinants of the effects of physical training and of the complications requiring resuscitation during exercise in patients with cardiovascular disease. Eur J Cardiovasc Prev Rehabil 11:304–312

    Article  PubMed  Google Scholar 

  8. Nishitani M, Shimada K, Sunayama S, Masaki Y, Kume A, Fukao K, Sai E, Yamashita H, Ohmura H, Onishi T, Shioya M, Sato H, Shimada A, Yamamoto T, Amano A, Daida H (2011) Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J Cardiol 58:173–180

    Article  PubMed  Google Scholar 

  9. Kamiya K, Mezzani A, Hotta K, Shimizu R, Kamekawa D, Noda C, Yamaoka-Tojo M, Matsunaga A, Masuda T (2014) Quadriceps isometric strength as a predictor of exercise capacity in coronary artery disease patients. Eur J Prev Cardiol 21:1285–1291

    Article  PubMed  Google Scholar 

  10. Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373

    Article  CAS  PubMed  Google Scholar 

  11. Cicoira M, Zanolla L, Franceschini L, Rossi A, Golia G, Zamboni M, Tosoni P, Zardini P (2001) Skeletal muscle mass independently predicts peak oxygen consumption and ventilatory response during exercise in noncachectic patients with chronic heart failure. J Am Coll Cardiol 37:2080–2085

    Article  CAS  PubMed  Google Scholar 

  12. Haykowsky MJ, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW (2014) Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol 113:1211–1216

    Article  PubMed  PubMed Central  Google Scholar 

  13. Agostoni P, Salvioni E, Debenedetti C, Vignati C, Cattadori G, Contini M, Magri D, Palermo P, Gondoni E, Brusoni D, Fiorentini C, Apostolo A (2010) Relationship of resting hemoglobin concentration to peak oxygen uptake in heart failure patients. Am J Hematol 85:414–417

    CAS  PubMed  Google Scholar 

  14. Cohen-Solal A, Keteyian SJ, Horton JR, Ellis SJ, Kraus WE, Kilpatrick RD (2013) Association between hemoglobin level and cardiopulmonary performance in heart failure: insights from the HF-ACTION study. Int J Cardiol 168:4357–4359

    Article  PubMed  Google Scholar 

  15. Kruger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U (2002) brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Coll Cardiol 40:718–722

    Article  CAS  PubMed  Google Scholar 

  16. Maeder M, Wolber T, Rickli H, Myers J, Hack D, Riesen W, Weilenmann D, Ammann P (2007) B-type natriuretic peptide kinetics and cardiopulmonary exercise testing in heart failure. Int J Cardiol 120:391–398

    Article  PubMed  Google Scholar 

  17. Kato Y, Suzuki S, Uejima T, Semba H, Kano H, Matsuno S, Takai H, Otsuka T, Oikawa Y, Nagashima K, Kirigaya H, Sagara K, Kunihara T, Yajima J, Sawada H, Aizawa T, Yamashita T (2017) Impact of BNP level and peak VO2 on future heart failure events: comparison between sinus rhythm and atrial fibrillation. Heart Vessels 32:428–435

    Article  PubMed  Google Scholar 

  18. Williams MJ, Milne BJ, Hancox RJ, Poulton R (2005) C-reactive protein and cardiorespiratory fitness in young adults. Eur J Cardiovasc Prev Rehabil 12:216–220

    Article  PubMed  Google Scholar 

  19. Church TS (2002) Associations between cardiorespiratory fitness and C-reactive protein in men. Arterioscler Thromb Vasc Biol 22:1869–1876

    Article  CAS  PubMed  Google Scholar 

  20. Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, Pyle L, Regensteiner JG, Reusch JE, Nadeau KJ (2015) Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care 38:126–131

    Article  CAS  PubMed  Google Scholar 

  21. Scrutinio D, Agostoni P, Gesualdo L, Corra U, Mezzani A, Piepoli M, Di Lenarda A, Iorio A, Passino C, Magri D, Masarone D, Battaia E, Girola D, Re F, Cattadori G, Parati G, Sinagra G, Villani GQ, Limongelli G, Pacileo G, Guazzi M, Metra M, Frigerio M, Cicoira M, Mina C, Malfatto G, Caravita S, Bussotti M, Salvioni E, Veglia F, Correale M, Scardovi AB, Emdin M, Giannuzzi P, Gargiulo P, Giovannardi M, Perrone-Filardi P, Raimondo R, Ricci R, Paolillo S, Farina S, Belardinelli R, Passantino A, La Gioia R, Metabolic Exercise test data combined with Cardiac and Kidney Index (MECKI) Score Research Group (2015) Renal function and peak exercise oxygen consumption in chronic heart failure with reduced left ventricular ejection fraction. Circ J 79:583–591

    Article  PubMed  Google Scholar 

  22. Sumide T, Shimada K, Ohmura H, Onishi T, Kawakami K, Masaki Y, Fukao K, Nishitani M, Kume A, Sato H, Sunayama S, Kawai S, Shimada A, Yamamoto T, Kikuchi K, Amano A, Daida H (2009) Relationship between exercise tolerance and muscle strength following cardiac rehabilitation: comparison of patients after cardiac surgery and patients with myocardial infarction. J Cardiol 54:273–281

    Article  PubMed  Google Scholar 

  23. Takaya Y, Kumasaka R, Arakawa T, Ohara T, Nakanishi M, Noguchi T, Yanase M, Takaki H, Kawano Y, Goto Y (2014) Impact of cardiac rehabilitation on renal function in patients with and without chronic kidney disease after acute myocardial infarction. Circ J 78:377–384

    Article  PubMed  Google Scholar 

  24. Kamakura T, Kawakami R, Nakanishi M, Ibuki M, Ohara T, Yanase M, Aihara N, Noguchi T, Nonogi H, Goto Y (2011) Efficacy of out-patient cardiac rehabilitation in low prognostic risk patients after acute myocardial infarction in primary intervention era. Circ J 75:315–321

    Article  CAS  PubMed  Google Scholar 

  25. Nishi I, Noguchi T, Iwanaga Y, Furuichi S, Aihara N, Takaki H, Goto Y (2011) Effects of exercise training in patients with chronic heart failure and advanced left ventricular systolic dysfunction receiving β-blockers. Circ J 75:1649–1655

    Article  PubMed  Google Scholar 

  26. Itoh H, Koike A, Taniguchi K, Marumo F (1989) Severity and pathophysiology of heart failure on the basis of anaerobic threshold (AT) and related parameters. Jpn Circ J 53:146–154

    Article  CAS  PubMed  Google Scholar 

  27. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  28. Kamiya K, Masuda T, Tanaka S, Hamazaki N, Matsue Y, Mezzani A, Matsuzawa R, Nozaki K, Maekawa E, Noda C, Yamaoka-Tojo M, Arai Y, Matsunaga A, Izumi T, Ako J (2015) Quadriceps strength as a predictor of mortality in coronary artery disease. Am J Med 128:1212–1219

    Article  PubMed  Google Scholar 

  29. Kim M, Kim H (2013) Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr 67:395–400

    Article  CAS  PubMed  Google Scholar 

  30. Shiran A, Kornfeld S, Zur S, Laor A, Karelitz Y, Militianu A, Merdler A, Lewis BS (1997) Determinants of improvement in exercise capacity in patients undergoing cardiac rehabilitation. Cardiology 88:207–213

    Article  CAS  PubMed  Google Scholar 

  31. Izawa KP, Watanabe S, Oka K, Hiraki K, Morio Y, Kasahara Y, Osada N, Omiya K, Makuuchi H (2011) Cardiac rehabilitation outcome following percutaneous coronary intervention compared to cardiac surgery. Recent Pat Cardiovasc Drug Discov 6:133–139

    Article  CAS  PubMed  Google Scholar 

  32. Lan C, Chen SY, Hsu CJ, Chiu SF, Lai JS (2002) Improvement of cardiorespiratory function after percutaneous transluminal coronary angioplasty or coronary artery bypass grafting. Am J Phys Med Rehabil 81:336–341

    Article  PubMed  Google Scholar 

  33. Santos KM, Cerqueira Neto ML, Carvalho VO, Santana Filho VJ, Silva Junior WM, Araujo Filho AA, Cerqueira TC, Cacau Lde A (2014) Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study. Rev Bras Cir Cardiovasc 29:355–359

    PubMed  PubMed Central  Google Scholar 

  34. Singh NP, Vargas FS, Cukier A, Terra-Filho M, Teixeira LR, Light RW (1992) Arterial blood gases after coronary artery bypass surgery. Chest 102:1337–1341

    Article  CAS  PubMed  Google Scholar 

  35. Roncada G, Dendale P, Linsen L, Hendrikx M, Hansen D (2015) Reduction in pulmonary function after CABG surgery is related to postoperative inflammation and hypercortisolemia. Int J Clin Exp Med 8:10938–10946

    PubMed  PubMed Central  Google Scholar 

  36. Cesari M, Penninx BWJH, Lauretani F, Russo CR, Carter C, Bandinelli S, Atkinson H, Onder G, Pahor M, Ferrucci L (2004) Hemoglobin levels and skeletal muscle: results from the InCHIANTI Study. J Gerontol Ser A Biol Sci Med Sci 59:M249–M254

    Article  Google Scholar 

  37. Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE (2000) Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci 55:M709–M715

    Article  CAS  PubMed  Google Scholar 

  38. Seene T, Kaasik P (2012) Muscle weakness in the elderly: role of sarcopenia, dynapenia, and possibilities for rehabilitation. Eur Rev Aging Phys Act 9:109–117

    Article  Google Scholar 

  39. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr (2002) Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 40:976–982

    Article  CAS  PubMed  Google Scholar 

  40. McDonagh TA, Robb SD, Murdoch DR, Morton JJ, Ford I, Morrison CE, Tunstall-Pedoe H, McMurray JJV, Dargie HJ (1998) Biochemical detection of left-ventricular systolic dysfunction. Lancet 351:9–13

    Article  CAS  PubMed  Google Scholar 

  41. Fukuta H, Ohte N, Mukai S, Saeki T, Kobayashi K, Kimura G (2008) Anemia is an independent predictor for elevated plasma levels of natriuretic peptides in patients undergoing cardiac catheterization for coronary artery disease. Circ J 72:212–217

    Article  CAS  PubMed  Google Scholar 

  42. McCullough PA, Duc P, Omland T, McCord J, Nowak RM, Hollander JE, Herrmann HC, Steg PG, Westheim A, Knudsen CW, Storrow AB, Abraham WT, Lamba S, Wu AH, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel AS, Breathing Not Properly Multinational Study I (2003) B-type natriuretic peptide and renal function in the diagnosis of heart failure: an analysis from the Breathing Not Properly Multinational Study. Am J Kidney Dis 41:571–579

    Article  CAS  PubMed  Google Scholar 

  43. Passino C, Severino S, Poletti R, Piepoli MF, Mammini C, Clerico A, Gabutti A, Nassi G, Emdin M (2006) Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. J Am Coll Cardiol 47:1835–1839

    Article  CAS  PubMed  Google Scholar 

  44. Hansen D, Eijnde BO, Roelants M, Broekmans T, Rummens JL, Hensen K, Daniels A, Van Erum M, Bonne K, Reyckers I, Alders T, Berger J, Dendale P (2011) Clinical benefits of the addition of lower extremity low-intensity resistance muscle training to early aerobic endurance training intervention in patients with coronary artery disease: a randomized controlled trial. J Rehabil Med 43:800–807

    Article  PubMed  Google Scholar 

  45. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094

    Article  PubMed  Google Scholar 

  46. Szmedra L, Bacharach DW, Buckenmeyer PJ, Hermann DT, Ehrich DA (1994) Response of patients with coronary artery disease stratified by ejection fraction following short-term training. Int J Cardiol 46:209–222

    Article  CAS  PubMed  Google Scholar 

  47. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW, American College of Cardiology Foundation, American Heart Association Task Force on Practice G (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127:e362–e425

    Article  PubMed  Google Scholar 

  48. Smith SC Jr, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, Hiratzka LF, Jones DW, Lloyd-Jones DM, Minissian M, Mosca L, Peterson ED, Sacco RL, Spertus J, Stein JH, Taubert KA, World Heart F, the Preventive Cardiovascular Nurses A (2011) AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation 124:2458–2473

    Article  PubMed  Google Scholar 

  49. Pack QR, Goel K, Lahr BD, Greason KL, Squires RW, Lopez-Jimenez F, Zhang Z, Thomas RJ (2013) Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: a community-based study. Circulation 128:590–597

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Goto.

Ethics declarations

For this type of study formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y., Ito, K., Yamamoto, K. et al. Predictors of improvements in exercise capacity during cardiac rehabilitation in the recovery phase after coronary artery bypass graft surgery versus acute myocardial infarction. Heart Vessels 33, 358–366 (2018). https://doi.org/10.1007/s00380-017-1076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-1076-2

Keywords

Navigation