Skip to main content

Advertisement

Log in

Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Cardiopulmonary exercise testing (CPET) is useful for the evaluation of patients with suspected or confirmed pulmonary hypertension (PH). End-tidal carbon dioxide pressure (PETCO2) during exercise is reduced with elevated pulmonary artery pressure. However, the utility of ventilatory parameters such as CPET for detecting PH remains unclear. We conducted a review in 155 patients who underwent right heart catheterization and CPET. Fifty-nine patients had PH [mean pulmonary arterial pressure (mPAP) ≥25 mmHg]. There was an inverse correlation between PETCO2 at the anaerobic threshold (AT) and mPAP (r = −0.66; P < 0.01). Multiple regression analysis showed that PETCO2 at the AT was independently associated with an elevated mPAP (P = 0.04). The sensitivity and specificity of CPET for PH were 80 and 86%, respectively, when the cut-off value identified by receiver operating characteristic curve analysis for PETCO2 at the AT was ≤34.7 mmHg. A combination of echocardiography and CPET improved the sensitivity in detecting PH without markedly reducing specificity (sensitivity 87%, specificity 85%). Evaluation of PETCO2 at the AT is useful for estimating pulmonary pressure. A combination of CPET and previous screening algorithms for PH may enhance the diagnostic ability of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, Aboyans V, Vaz Carneiro A, Achenbach S, Agewall S, Allanore Y, Asteggiano R, Paolo Badano L, Albert Barberà J, Bouvaist H, Bueno H, Byrne RA, Carerj S, Castro G, Erol Ç, Falk V, Funck-Brentano C, Gorenflo M, Granton J, Iung B, Kiely DG, Kirchhof P, Kjellstrom B, Landmesser U, Lekakis J, Lionis C, Lip GY, Orfanos SE, Park MH, Piepoli MF, Ponikowski P, Revel MP, Rigau D, Rosenkranz S, Völler H, Luis Zamorano J (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119

    Article  PubMed  Google Scholar 

  2. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL Jr, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC Jr (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106:1883–1892

    Article  PubMed  Google Scholar 

  4. Irisawa H, Takeuchi K, Inui N, Miyakawa S, Morishima Y, Mizushima T, Watanabe H (2014) Incremental shuttle walk test as a valuable assessment of exercise performance in patients with pulmonary arterial hypertension. Circ J 78:215–221

    Article  PubMed  Google Scholar 

  5. Kato Y, SuZuki S, Uejima T, Semba H, Kano H, Matsuno S, Takai H, Otsuka T, Oikawa Y, Nagashima K, Kirigaya H, Sagara K, Kunihara T, Yajima J, Sawada H, Aizawa T, Yamashita T (2017) Impact of BNP level and peak VO2 on future heart failure events: comparison between sinus rhythm and atrial fibrillation. Heart Vessels 32:428. doi:10.1007/s00380-016-0887-x

    Article  PubMed  Google Scholar 

  6. Ha JW, Choi D, Park S, Shim CY, Kim JM, Moon SH, Lee HJ, Choi EY, Chung N (2009) Determinants of exercise-induced pulmonary hypertension in patients with normal left ventricular ejection fraction. Heart 95:490–494

    Article  PubMed  Google Scholar 

  7. Reindl I, Wernecke KD, Opitz C, Wensel R, Konig D, Dengler T, Schimke I, Kleber FX (1998) Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am Heart J 136:778–785

    Article  CAS  PubMed  Google Scholar 

  8. Deboeck G, Niset G, Lamotte M, Vachiery JL, Naeije R (2004) Exercise testing in pulmonary arterial hypertension and in chronic heart failure. Eur Respir J 23:747–751

    Article  CAS  PubMed  Google Scholar 

  9. Grunig E, Barner A, Bell M, Claussen M, Dandel M, Dumitrescu D, Gorenflo M, Holt S, Kovacs G, Ley S, Meyer JF, Pabst S, Riemekasten G, Saur J, Schwaiblmair M, Seck C, Sinn L, Sorichter S, Winkler J, Leuchte H (2011) Non-invasive diagnosis of pulmonary hypertension: ESC/ERS Guidelines with Updated Commentary of the Cologne Consensus Conference 2011. Int J Cardiol 154(Suppl 1):S3–S12

    Article  PubMed  Google Scholar 

  10. Arena R, Guazzi M, Myers J, Grinnen D, Forman DE, Lavie CJ (2011) Cardiopulmonary exercise testing in the assessment of pulmonary hypertension. Expert Rev Respir Med 5:281–293

    Article  PubMed  Google Scholar 

  11. Ferrazza AM, Martolini D, Valli G, Palange P (2009) Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 77:3–17

    Article  CAS  PubMed  Google Scholar 

  12. Guazzi M, Arena R (2009) The impact of pharmacotherapy on the cardiopulmonary exercise test response in patients with heart failure: a mini review. Curr Vasc Pharmacol 7:557–569

    Article  CAS  PubMed  Google Scholar 

  13. Hansen JE, Ulubay G, Chow BF, Sun XG, Wasserman K (2007) Mixed-expired and end-tidal CO2 distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases. Chest 132:977–983

    Article  PubMed  Google Scholar 

  14. Arena R, Myers J, Guazzi M (2008) The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev 13:245–269

    Article  PubMed  Google Scholar 

  15. Yasunobu Y, Oudiz RJ, Sun XG, Hansen JE, Wasserman K (2005) End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest 127:1637–1646

    Article  PubMed  Google Scholar 

  16. Neal JE, Lee AS, Burger CD (2014) Submaximal exercise testing may be superior to the 6-min walk test in assessing pulmonary arterial hypertension disease severity. Clin Respir J 8:404–409

    Article  CAS  PubMed  Google Scholar 

  17. Woods PR, Frantz RP, Taylor BJ, Olson TP, Johnson BD (2011) The usefulness of submaximal exercise gas exchange to define pulmonary arterial hypertension. J Heart Lung Transplant 30:1133–1142

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhai Z, Murphy K, Tighe H, Wang C, Wilkins MR, Gibbs JS, Howard LS (2011) Differences in ventilatory inefficiency between pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Chest 140:1284–1291

    Article  PubMed  Google Scholar 

  19. Scheidl SJ, Englisch C, Kovacs G, Reichenberger F, Schulz R, Breithecker A, Ghofrani HA, Seeger W, Olschewski H (2012) Diagnosis of CTEPH versus IPAH using capillary to end-tidal carbon dioxide gradients. Eur Respir J 39:119–124

    Article  CAS  PubMed  Google Scholar 

  20. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield M (2009) Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 53:1119–1126

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kjaergaard J, Akkan D, Iversen K, Kjoller E, Kober L, Torp-Pedersen C, Hassager C (2007) Prognostic importance of pulmonary hypertension in patients with heart failure. Am J Cardiol 99:1146–1150

    Article  PubMed  Google Scholar 

  22. Hirashiki A, Adachi S, Nakano Y, Kono Y, Shimazu S, Shimizu S, Morimoto R, Okumura T, Takeshita K, Yamada S, Murohara T, Kondo T (2014) Cardiopulmonary exercise testing to evaluate the exercise capacity of patients with inoperable chronic thromboembolic pulmonary hypertension: an endothelin receptor antagonist improves the peak PETCO. Life Sci 118:397–403

    Article  CAS  PubMed  Google Scholar 

  23. Myers J, Gujja P, Neelagaru S, Hsu L, Vittorio T, Jackson-Nelson T, Burkhoff D (2009) End-tidal CO2 pressure and cardiac performance during exercise in heart failure. Med Sci Sports Exerc 41:19–25

    Article  PubMed  Google Scholar 

  24. Lim HS, Theodosiou M (2014) Exercise ventilatory parameters for the diagnosis of reactive pulmonary hypertension in patients with heart failure. J Card Fail 20:650–657

    Article  PubMed  Google Scholar 

  25. Kano H, Koike A, Hoshimoto-Iwamoto M, Nagayama O, Sakurada K, Suzuki T, Tsuneoka H, Sawada H, Aizawa T, Wasserman K (2012) Abnormal end-tidal PO(2) and PCO(2) at the anaerobic threshold correlate well with impaired exercise gas exchange in patients with left ventricular dysfunction. Circ J 76:79–87

    Article  CAS  PubMed  Google Scholar 

  26. Farber HW, Foreman AJ, Miller DP, McGoon MD (2011) REVEAL registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail 17:56–64

    Article  PubMed  Google Scholar 

  27. Hioka T, Kaga S, Mikami T, Okada K, Murayama M, Masauzi N, Nakabachi M, Nishino H, Yokoyama S, Nishida M, Iwano H, Sakakibara M, Yamada S, Tsutsui H (2016) Overestimation by echocardiography of the peak systolic pressure gradient between the right ventricle and right atrium due to tricuspid regurgitation and the usefulness of the early diastolic transpulmonary valve pressure gradient for estimating pulmonary artery pressure. Heart Vessels. doi:10.1007/s00380-016-0929-4

    PubMed  Google Scholar 

  28. Coghlan JG, Denton CP, Grunig E, Bonderman D, Distler O, Khanna D, Muller-Ladner U, Pope JE, Vonk MC, Doelberg M, Chadha-Boreham H, Heinzl H, Rosenberg DM, McLaughlin VV, Seibold JR (2014) Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis 73:1340–1349

    Article  PubMed  Google Scholar 

  29. Nagel C, Henn P, Ehlken N, D’Andrea A, Blank N, Bossone E, Bottger A, Fiehn C, Fischer C, Lorenz HM, Stockl F, Grunig E, Egenlauf B (2015) Stress Doppler echocardiography for early detection of systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Res Ther 17:165

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lewis GD, Bossone E, Naeije R, Grunig E, Saggar R, Lancellotti P, Ghio S, Varga J, Rajagopalan S, Oudiz R, Rubenfire M (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128:1470–1479

    Article  PubMed  Google Scholar 

  31. Markowitz DH, Systrom DM (2004) Diagnosis of pulmonary vascular limit to exercise by cardiopulmonary exercise testing. J Heart Lung Transplant 23:88–95

    Article  PubMed  Google Scholar 

  32. Sun XG, Hansen JE, Oudiz RJ, Wasserman K (2002) Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation 105:54–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of Hiroshima University Hospital for contributing to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Dohi.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashi, A., Dohi, Y., Yamabe, S. et al. Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension. Heart Vessels 32, 1350–1357 (2017). https://doi.org/10.1007/s00380-017-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-0999-y

Keywords

Navigation