Skip to main content

Cardiopulmonary Exercise Testing in Pulmonary Hypertension

  • Chapter
Diagnosis and Management of Pulmonary Hypertension

Part of the book series: Respiratory Medicine ((RM,volume 12))

  • 2042 Accesses

Abstract

Early and accurate diagnosis of pulmonary vascular disease is important given the high mortality of untreated pulmonary hypertension. The development of cardiopulmonary exercise testing (CPET) has allowed an early diagnosis of PAH in “at risk” patients or those with suggestive clinical findings. CPET can quantify the degree of exercise impairment, and rule out a pulmonary mechanical limit to exercise. It can also be used to monitor disease progression and response to treatment. CPET generally consists of an incremental symptom-limited cycling or treadmill exercise test with measurements of ventilation and pulmonary gas exchange. Noninvasive testing is done with continuous 12-lead ECG, cuff blood pressure monitoring and pulse oximetry. Invasive CPET adds arterial and pulmonary artery catheters for blood gas, pH and pressure measurements. CPET when used in the context of a diagnostic algorithm, can confirm the diagnosis of exercise-induced PH, distinguish between pulmonary arterial and venous hypertension, and rule out confounders such as impaired systemic O2 extraction. CPET may be used alone or combined with other modalities, such as transthoracic cardiac Doppler echo and MRI. Recent expert consensus statements suggest CPET is useful in the diagnosis, management and risk stratification of PH. This chapter provides an overview of the history of CPET, describes how measurements are obtained and interpreted, and discusses its use in diagnosis and monitoring of pulmonary hypertensive diseases including exercise-induced pulmonary hypertension and pulmonary hypertension associated heart and lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6MWT:

6-min walk test

A-sDO2 :

Alveolar–arterial oxygen tension difference

AT:

Anaerobic threshold

BRI:

Breathing reserve index

CaO2 :

Oxygen content of arterial blood

CO:

Cardiac output

CPET:

Cardiopulmonary exercise test

CvO2 :

Oxygen content of venous blood

DO2 :

Oxygen delivery

DO2max:

Maximum systemic oxygen delivery

eiPAH:

Exercise-induced pulmonary hypertension

EOV:

Exercise oscillatory ventilation

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduce ejection fraction

ITP:

Intrathoracic pressure

IVS:

Interventricular septum

LT:

Lactate threshold

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

mPAP:

Mean pulmonary artery pressure

MVV:

Maximum voluntary ventilation

OUES:

O2 uptake efficiency slope

PAH:

Pulmonary arterial hypertension

PAP:

Pulmonary artery pressure

PASP:

Pulmonary artery systolic pressure

PCWP:

Pulmonary capillary wedge pressure

PETCO2 :

End tidal PCO2

PFO:

Patent foramen ovale

PH:

Pulmonary hypertension

PVD:

Pulmonary vascular disease

PVL:

Pulmonary vascular limit

PVR:

Pulmonary vascular resistance

RA:

Right atrium

RAP:

Right atrial pressure

RER:

Respiratory exchange ratio

RHC:

Right heart catheterization

ROC:

Receiver operating characteristic

RV:

Right ventricle

RVSP:

Right ventricular systolic pressure

SVR:

Systemic vascular resistance

TPG:

Transpulmonary gradient

ULN:

Upper limit of normal

VAT:

Ventilatory anaerobic threshold

VCO2 :

Carbon dioxide production

VE:

Minute ventilation

VEmax:

Minute ventilation at peak exercise

VO2 :

Oxygen uptake

VO2max:

Maximum oxygen uptake

VT:

Tidal volume

WHO:

World Health Organization

References

  1. Thenappan T, et al. A USA-based registry for pulmonary arterial hypertension: 1982–2006. Eur Respir J. 2007;30(6):1103–10.

    CAS  PubMed  Google Scholar 

  2. Whyte K. Towards early detection of pulmonary hypertension: a call to arms. Eur Respir J. 2014;43(1):16–9.

    PubMed  Google Scholar 

  3. Pullamsetti SS, et al. Novel and emerging therapies for pulmonary hypertension. Am J Respir Crit Care Med. 2014;189(4):394–400.

    CAS  PubMed  Google Scholar 

  4. Norfolk SG, Lederer DJ, Tapson VF. Lung transplantation and atrial septostomy in pulmonary arterial hypertension. Clin Chest Med. 2013;34(4):857–65.

    PubMed  Google Scholar 

  5. Moser KM, et al. Chronic thromboembolic pulmonary hypertension: clinical picture and surgical treatment. Eur Respir J. 1992;5(3):334–42.

    CAS  PubMed  Google Scholar 

  6. Mohsenifar Z, et al. Lack of sensitivity of measurements of Vd/Vt at rest and during exercise in detection of hemodynamically significant pulmonary vascular abnormalities in collagen vascular disease. Am Rev Respir Dis. 1981;123(5):508–12.

    CAS  PubMed  Google Scholar 

  7. Tolle JJ, et al. Exercise-induced pulmonary arterial hypertension. Circulation. 2008;118(21):2183–9.

    PubMed Central  PubMed  Google Scholar 

  8. Saggar R, et al. Pulmonary vascular responses to exercise: a haemodynamic observation. Eur Respir J. 2012;39(2):231–4.

    CAS  PubMed  Google Scholar 

  9. Naeije R, et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013;187(6):576–83.

    PubMed Central  PubMed  Google Scholar 

  10. Fowler RM, et al. Implications of exercise-induced pulmonary arterial hypertension. Med Sci Sports Exerc. 2011;43(6):983–9.

    PubMed  Google Scholar 

  11. Hansen JE, et al. Reproducibility of cardiopulmonary exercise measurements in patients with pulmonary arterial hypertension. Chest. 2004;126(3):816–24.

    PubMed  Google Scholar 

  12. Barron A, et al. Test-retest repeatability of cardiopulmonary exercise test variables in patients with cardiac or respiratory disease. Eur J Prev Cardiol. 2014;7:7.

    Google Scholar 

  13. American Thoracic Society. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Google Scholar 

  14. Balady GJ, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.

    PubMed  Google Scholar 

  15. Grünig E, et al. Non-invasive diagnosis of pulmonary hypertension: ESC/ERS Guidelines with Updated Commentary of the Cologne Consensus Conference 2011. Int J Cardiol. 2011;154 Suppl 1:S3–12.

    PubMed  Google Scholar 

  16. Committee W, et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2012;33(23):2917–27.

    Google Scholar 

  17. Sun XG, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104(4):429–35.

    CAS  PubMed  Google Scholar 

  18. Smith G, et al. Safety of maximal cardiopulmonary exercise testing in pediatric patients with pulmonary hypertension. Chest. 2009;135(5):1209–14.

    PubMed  Google Scholar 

  19. Arena R, et al. Cardiopulmonary exercise testing in the assessment of pulmonary hypertension. Expert Rev Respir Med. 2011;5(2):281–93.

    PubMed  Google Scholar 

  20. Dumitrescu D, et al. Developing pulmonary vasculopathy in systemic sclerosis, detected with non-invasive cardiopulmonary exercise testing. PLoS One. 2010;5(12):e14293.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Oudiz R, Barst R, Hansen J. Cardiopulmonary exercise testing and six-minute walk correlations in pulmonary arterial hypertension. Am J Cardiol. 2006;97:123–6.

    PubMed  Google Scholar 

  22. Wensel R, Opitz C, Anker S. Assessment of survival in patients with primary pulmonary hypertension. Importance of cardiopulmonary exercise testing. Circulation. 2002;106:319–24.

    PubMed  Google Scholar 

  23. Sun X, et al. Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation. 2002;105:54–60.

    PubMed  Google Scholar 

  24. Riley M, et al. Gas exchange responses to continuous incremental cycle ergometry exercise in primary pulmonary hypertension in humans. Eur J Appl Physiol. 2000;83:63–70.

    CAS  PubMed  Google Scholar 

  25. Miyamoto S, Nagaya N, Satoh T. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161:487–92.

    CAS  PubMed  Google Scholar 

  26. Markowitz DH, Systrom DM. Diagnosis of pulmonary vascular limit to exercise by cardiopulmonary exercise testing. J Heart Lung Transplant. 2004;23(1):88–95.

    PubMed  Google Scholar 

  27. Nagaya N, Shimizu Y, Satoh T. Oral beraprost sodium improves exercise capacity and ventilatory efficiency in patients with primary or thromboembolic pulmonary hypertension. Heart. 2002;87:340–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Yasunobu Y, et al. End-tidal pco2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest. 2005;127(5):1637–46.

    PubMed  Google Scholar 

  29. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129(2 Pt 2):S49–55.

    CAS  PubMed  Google Scholar 

  30. D’Alonzo GE, et al. Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension. Chest. 1987;92(1):57–62.

    PubMed  Google Scholar 

  31. Gläser S, et al. Impact of pulmonary hypertension on gas exchange and exercise capacity in patients with pulmonary fibrosis. Respir Med. 2009;103(2):317–24.

    PubMed  Google Scholar 

  32. Wax D, Garofano R, Barst RJ. Effects of long-term infusion of prostacyclin on exercise performance in patients with primary pulmonary hypertension. Chest. 1999;116(4):914–20.

    CAS  PubMed  Google Scholar 

  33. Humbert M, McLaughlin V. Proceedings of the 4th World Symposium on Pulmonary Hypertension. J Am Coll Cardiol. 2009;54:S1–116.

    PubMed  Google Scholar 

  34. Groepenhoff H, et al. Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc. 2008;40(10):1725–32.

    PubMed  Google Scholar 

  35. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.

    CAS  PubMed  Google Scholar 

  36. Putman CT, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol. 1995;269(3 Pt 1):E458–68.

    CAS  PubMed  Google Scholar 

  37. Stainsby WN, et al. Oxidation/reduction state of cytochrome oxidase during repetitive contractions. J Appl Physiol. 1989;67(5):2158–62.

    CAS  PubMed  Google Scholar 

  38. Graham TE, Saltin B. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J Appl Physiol. 1989;66:561–6.

    CAS  PubMed  Google Scholar 

  39. Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol. 1985;58:1115–21.

    CAS  PubMed  Google Scholar 

  40. Gaesser GA, Poole DC. Lactate and ventilatory thresholds: disparity in time course of adaptations to training. J Appl Physiol. 1986;61:99–1004.

    Google Scholar 

  41. Phillips SM, et al. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol. 1996;81(5):2182–91.

    CAS  PubMed  Google Scholar 

  42. Hagberg JM, et al. Exercise and recovery ventilatory and VO2 responses of patients with McArdle’s disease. J Appl Physiol. 1990;68:1393–8.

    CAS  PubMed  Google Scholar 

  43. Sue DY, Hansen JE. Normal values in adults during exercise testing. Clin Chest Med. 1984;5:89–98.

    CAS  PubMed  Google Scholar 

  44. Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.

    CAS  PubMed  Google Scholar 

  45. Wasserman K, Whipp BJ. Exercise physiology in health and disease. Am Rev Respir Dis. 1975;112:219–49.

    CAS  PubMed  Google Scholar 

  46. Hey EN, et al. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol. 1966;1:193–205.

    CAS  PubMed  Google Scholar 

  47. Medoff BD, et al. Breathing reserve at the lactate threshold to differentiate a pulmonary mechanical from cardiovascular limit to exercise. Chest. 1998;113(4):913–8.

    CAS  PubMed  Google Scholar 

  48. Rochester DF. Tests of respiratory muscle function. Clin Chest Med. 1988;9:249–61.

    CAS  PubMed  Google Scholar 

  49. Theodore J, et al. Augmented ventilatory response to exercise in pulmonary hypertension. Chest. 1986;89(1):39–44.

    CAS  PubMed  Google Scholar 

  50. Jones NL. Normal values for pulmonary gas exchange during exercise. Am Rev Respir Dis. 1984;129(Suppl):S44–6.

    CAS  PubMed  Google Scholar 

  51. Kleber FX, et al. Impairment of ventilatory efficiency in heart failure: prognostic impact. Circulation. 2000;101(24):2803–9.

    CAS  PubMed  Google Scholar 

  52. Habedank D, et al. Ventilatory efficiency and exercise tolerance in 101 healthy volunteers. Eur J Appl Physiol. 1998;77:412–26.

    Google Scholar 

  53. Fukuchi K, Hayashida K, Nakanishi N. Quantitative analysis of lung perfusion in patients with primary pulmonary hypertension. J Nucl Med. 2002;43:757–61.

    PubMed  Google Scholar 

  54. Reybrouck T, Mertens L, Schulze-Neick I. Ventilatory inefficiency for carbon dioxide during exercise in patients with pulmonary hypertension. Clin Physiol. 2008;28:337–44.

    Google Scholar 

  55. Reindl I, Wernecke K, Opitz C. Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am Heart J. 1998;136:778–85.

    CAS  PubMed  Google Scholar 

  56. Lewis GD, et al. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ Heart Fail. 2008;1(4):227–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Raeside DA, et al. Pulmonary artery pressure measurement during exercise testing in patients with suspected pulmonary hypertension. Eur Respir J. 2000;16(2):282–7.

    CAS  PubMed  Google Scholar 

  58. Mitani R, Haraguchi M, Takata S. Excessive ventilatory response during exercise in patients with non-hypoxic pulmonary hypertension. Circ J. 2002;66:453–6.

    PubMed  Google Scholar 

  59. Yetman AT, et al. Utility of cardiopulmonary stress testing in assessing disease severity in children with pulmonary arterial hypertension. Am J Cardiol. 2005;95(5):697–9.

    PubMed  Google Scholar 

  60. Schwaiblmair M, et al. Ventilatory efficiency testing as prognostic value in patients with pulmonary hypertension. BMC Pulm Med. 2012;12(1):23.

    PubMed Central  PubMed  Google Scholar 

  61. Wensel R, et al. Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation. 2000;101(20):2388–92.

    CAS  PubMed  Google Scholar 

  62. Groepenhoff H, et al. Prognostic relevance of changes in exercise test variables in pulmonary arterial hypertension. PLoS One. 2013;8(9):e72013.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Paciocco G, et al. Oxygen desaturation on the six-minute walk test and mortality in untreated primary pulmonary hypertension. Eur Respir J. 2001;17(4):647–52.

    CAS  PubMed  Google Scholar 

  64. Hansen JE, et al. Mixed-expired and end-tidal CO2 distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases. Chest. 2007;132(3):977–83.

    PubMed  Google Scholar 

  65. Oudiz RJ, et al. Effect of sildenafil on ventilatory efficiency and exercise tolerance in pulmonary hypertension. Eur J Heart Fail. 2007;9(9):917–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Baba R, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996;28(6):1567–72.

    CAS  PubMed  Google Scholar 

  67. Hollenberg M, Tager IB. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol. 2000;36(1):194–201.

    CAS  PubMed  Google Scholar 

  68. Sun XG, Hansen JE, Stringer WW. Oxygen uptake efficiency plateau best predicts early death in heart failure. Chest. 2012;141(5):1284–94.

    PubMed  Google Scholar 

  69. Ramos RP, et al. Exercise oxygen uptake efficiency slope independently predicts poor outcome in PAH. Eur Respir J. 2013;5:5.

    Google Scholar 

  70. Corra U, et al. Sleep and exertional periodic breathing in chronic heart failure: prognostic importance and interdependence. Circulation. 2006;113(1):44–50.

    PubMed  Google Scholar 

  71. Kremser CB, O’Toole MF, Leff AR. Oscillatory hyperventilation in severe congestive heart failure secondary to idiopathic dilated cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol. 1987;59(8):900–5.

    CAS  PubMed  Google Scholar 

  72. Sun XG, et al. Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol. 2010;55(17):1814–23.

    PubMed  Google Scholar 

  73. Guazzi M, Raimondo R, Vicenzi M. Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol. 2007;50:299–308.

    PubMed  Google Scholar 

  74. Guazzi M, et al. Exercise oscillatory breathing in diastolic heart failure: prevalence and prognostic insights. Eur Heart J. 2008;29(22):2751–9.

    PubMed  Google Scholar 

  75. Arena R, et al. Prognostic value of timing and duration characteristics of exercise oscillatory ventilation in patients with heart failure. J Heart Lung Transplant. 2008;27(3):341–7.

    PubMed  Google Scholar 

  76. Murphy RM, et al. Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation. 2011;124(13):1442–51.

    PubMed Central  PubMed  Google Scholar 

  77. Leite JJ, et al. Periodic breathing during incremental exercise predicts mortality in patients with chronic heart failure evaluated for cardiac transplantation. J Am Coll Cardiol. 2003;41(12):2175–81.

    PubMed  Google Scholar 

  78. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of exercise testing and interpretation. 3rd ed. Baltimore, MD: Lipincott Williams & Wilkins; 1999. p. 193.

    Google Scholar 

  79. Weisman IM, Zeballos RJ. An integrated approach to the interpretation of cardiopulmonary exercise testing. Clin Chest Med. 1994;15(2):421–45.

    CAS  PubMed  Google Scholar 

  80. Eschenbacher WL, Mannina A. An algorithm for the interpretation of cardiopulmonary exercise tests. Chest. 1990;97(2):263–7.

    CAS  PubMed  Google Scholar 

  81. Ramos RP, et al. Clinical usefulness of response profiles to rapidly incremental cardiopulmonary exercise testing. Pulm Med. 2013;359021(10):12.

    Google Scholar 

  82. Hickam JB, Cargill WH. Effect of exercise on cardiac output and pulmonary arterial pressure in normal persons and in patients with cardiovascular disease and pulmonary emphysema. J Clin Invest. 1948;27(1):10–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Slonim NB, et al. The effect of mild exercise in the supine position on the pulmonary arterial pressure of five normal human subjects. J Clin Invest. 1954;33(7):1022–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Damato AN, Galante JG, Smith WM. Hemodynamic response to treadmill exercise in normal subjects. J Appl Physiol. 1966;21(3):959–66.

    CAS  PubMed  Google Scholar 

  85. Janicki JS, et al. The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation. 1985;72(6):1270–8.

    CAS  PubMed  Google Scholar 

  86. Maron BA, et al. The Invasive Cardiopulmonary Exercise Test. Circulation. 2013;127(10):1157–64.

    PubMed  Google Scholar 

  87. Reeves JT, et al. Increased wedge pressure facilitates decreased lung vascular resistance during upright exercise. Chest. 1988;93(Suppl):97S–9.

    CAS  PubMed  Google Scholar 

  88. Kovacs G, et al. Zero reference level for right heart catheterisation. Eur Respir J. 2013;42(6):1586–94.

    PubMed  Google Scholar 

  89. Fowler NO. The normal pulmonary arterial pressure-flow relationships during exercise. Am J Med. 1969;47(1):1–6.

    CAS  PubMed  Google Scholar 

  90. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992–1007.

    PubMed  Google Scholar 

  91. Blanco I, et al. Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Respir Crit Care Med. 2010;181(3):270–8.

    CAS  PubMed  Google Scholar 

  92. Hilde JM, et al. Haemodynamic responses to exercise in patients with COPD. Eur Respir J. 2013;41(5):1031–41.

    CAS  PubMed  Google Scholar 

  93. Lockhart A, et al. Elevated pulmonary artery wedge pressure at rest and during exercise in chronic bronchitis: fact or fancy. Clin Sci. 1969;37(2):503–17.

    CAS  PubMed  Google Scholar 

  94. Tyberg JV, et al. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation. 1986;73(3):428–32.

    CAS  PubMed  Google Scholar 

  95. Boerrigter BG, et al. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects? Eur Respir J. 2013;43(5):1316–25.

    PubMed  Google Scholar 

  96. Reeves JT, et al. Operation Everest II: cardiac filling pressures during cycle exercise at sea level. Respir Physiol. 1990;80:147–54.

    CAS  PubMed  Google Scholar 

  97. Borlaug BA, et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.

    PubMed Central  PubMed  Google Scholar 

  98. Granath A, Jonsson B, Strandell T. Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med Scand. 1964;176:425–46.

    CAS  PubMed  Google Scholar 

  99. Groves BM, et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol. 1987;63(2):521–30.

    CAS  PubMed  Google Scholar 

  100. Weber KT, Janicki JS. Cardiopulmonary exercise testing: physiologic principles and clinical applications. Philadelphia: WB Saunders; 1986.

    Google Scholar 

  101. Dempsey JA. Is the lung built for exercise? Med Sci Sports Exerc. 1986;18:143–55.

    CAS  PubMed  Google Scholar 

  102. Weber KT, Janicki JS. Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol. 1985;55:22A–31.

    CAS  PubMed  Google Scholar 

  103. Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1983;45:169–89.

    CAS  PubMed  Google Scholar 

  104. Mahler DA, et al. Volumetric responses of right and left ventricles during upright exercise in normal subjects. J Appl Physiol. 1985;58:1818–22.

    CAS  PubMed  Google Scholar 

  105. Manyari DE, Kostuk WJ. Left and right ventricular function at rest and during bicycle exercise in the supine and sitting positions in normal subjects and patients with coronary artery disease: assessment by radionuclide ventriculography. Am J Cardiol. 1983;51:36–42.

    CAS  PubMed  Google Scholar 

  106. Shepherd JT. Circulatory response to exercise in health. Circulation. 1987;76(Suppl V):VI3–10.

    CAS  PubMed  Google Scholar 

  107. Galie N, et al. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004;25(24):2243–78.

    PubMed  Google Scholar 

  108. McGoon M, et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP Evidence-Based Clinical Practice Guidelines. Chest. 2004;126(1_suppl):14S–34.

    PubMed  Google Scholar 

  109. Hoeper MM, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25, Suppl):D42–50.

    PubMed  Google Scholar 

  110. Lewis GD, et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013;128(13):1470–9.

    PubMed  Google Scholar 

  111. Badesch DB, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S55–66.

    PubMed  Google Scholar 

  112. Kovacs G, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94.

    CAS  PubMed  Google Scholar 

  113. Kane DW, et al. Exercise-induced pulmonary vasoconstriction during combined blockade of nitric oxide synthase and beta adrenergic receptors. J Clin Investig. 1994;93(2):677–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Fu Q, et al. Cardiac origins of the postural orthostatic tachycardia syndrome. J Am Coll Cardiol. 2010;55(25):2858–68.

    PubMed Central  PubMed  Google Scholar 

  115. Taivassalo T, et al. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain. 2003;126(2):413–23.

    PubMed  Google Scholar 

  116. Fowler RM, Gain KR, Gabbay E. Exercise intolerance in pulmonary arterial hypertension. Pulm Med. 2012;2012:359204.

    PubMed Central  PubMed  Google Scholar 

  117. Kovacs G, et al. Borderline pulmonary arterial pressure is associated with decreased exercise capacity in scleroderma. Am J Respir Crit Care Med. 2009;180(9):881–6.

    PubMed  Google Scholar 

  118. Steen V, et al. Exercise induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest. 2008;134(1):146–51.

    PubMed  Google Scholar 

  119. Whyte K, et al. The association between resting and mild-to-moderate exercise pulmonary artery pressure. Eur Respir J. 2012;39(2):313–8.

    CAS  PubMed  Google Scholar 

  120. Proudman SM, et al. Pulmonary arterial hypertension in systemic sclerosis: the need for early detection and treatment. Intern Med J. 2007;37(7):485–94.

    CAS  PubMed  Google Scholar 

  121. Raeside DA, et al. Pulmonary artery pressure variation in patients with connective tissue disease: 24 hour ambulatory pulmonary artery pressure monitoring. Thorax. 1998;53(10):857–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Saggar R, et al. Brief report: effect of ambrisentan treatment on exercise-induced pulmonary hypertension in systemic sclerosis: a prospective single-center, open-label pilot study. Arthritis Rheum. 2012;64(12):4072–7.

    CAS  PubMed  Google Scholar 

  123. Condliffe R, et al. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am J Respir Crit Care Med. 2009;179(2):151–7.

    PubMed  Google Scholar 

  124. Guazzi M, Cahalin LP, Arena R. Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure. J Card Fail. 2013;19(7):461–7.

    PubMed  Google Scholar 

  125. Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol. 2005;46(10):1883–90.

    PubMed  Google Scholar 

  126. Bhella PS, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13(12):1296–304.

    PubMed Central  PubMed  Google Scholar 

  127. Borlaug BA. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ J. 2013;78(1):20–32.

    PubMed  Google Scholar 

  128. Abudiab MM, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15(7):776–85.

    PubMed Central  PubMed  Google Scholar 

  129. van Empel VPM, Kaye DM. Integration of exercise evaluation into the algorithm for evaluation of patients with suspected heart failure with preserved ejection fraction. Int J Cardiol. 2013;168(2):716–22.

    PubMed  Google Scholar 

  130. Kitzman DW, et al. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17(5):1065–72.

    CAS  PubMed  Google Scholar 

  131. Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc. 2008;40(1):3–8.

    CAS  PubMed  Google Scholar 

  132. Haykowsky MJ, et al. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58(3):265–74.

    PubMed Central  PubMed  Google Scholar 

  133. Lam CS, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.

    PubMed Central  PubMed  Google Scholar 

  134. Laskey WK, et al. Pulmonary artery hemodynamics in primary pulmonary hypertension. J Am Coll Cardiol. 1993;21(2):406–12.

    CAS  PubMed  Google Scholar 

  135. Wonisch M, et al. Continuous haemodynamic monitoring during exercise in patients with pulmonary hypertension. Int J Cardiol. 2005;101(3):415–20.

    PubMed  Google Scholar 

  136. Lewis GD, et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail. 2011;4(3):276–85.

    PubMed Central  PubMed  Google Scholar 

  137. Holverda S, et al. Stroke volume increase to exercise in chronic obstructive pulmonary disease is limited by increased pulmonary artery pressure. Heart. 2009;95(2):137–41.

    CAS  PubMed  Google Scholar 

  138. Oelberg DA, et al. Ventilatory and cardiovascular responses to inspired He-O2 during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(6):1876–82.

    CAS  PubMed  Google Scholar 

  139. Oelberg DA, et al. Systemic oxygen extraction during incremental exercise in patients with severe chronic obstructive pulmonary disease. Eur J Appl Physiol Occup Physiol. 1998;78(3):201–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron B. Waxman M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Systrom, D.M., Waxman, A.B. (2015). Cardiopulmonary Exercise Testing in Pulmonary Hypertension. In: Klinger, J., Frantz, R. (eds) Diagnosis and Management of Pulmonary Hypertension. Respiratory Medicine, vol 12. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2636-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2636-7_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2635-0

  • Online ISBN: 978-1-4939-2636-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics