Skip to main content

Advertisement

Log in

Low circulating coenzyme Q10 during acute phase is associated with inflammation, malnutrition, and in-hospital mortality in patients admitted to the coronary care unit

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Coenzyme Q10 (CoQ10) has a potential role in the prevention and treatment of heart failure through improved cellular bioenergetics. In addition, it has antioxidant, free radical scavenging, and vasodilatory effects that may be beneficial. Although critical illness in intensive care unit is associated with decreased circulating CoQ10 levels, the clinical significance of CoQ10 levels during acute phase in the patients of cardiovascular disease remains unclear. We enrolled 257 consecutive cardiovascular patients admitted to the coronary care unit (CCU). Serum CoQ10 levels were measured after an overnight fast within 24 h of admission. We examined the comparison of serum CoQ10 levels between survivors and in-hospital mortalities in patients with cardiovascular disease. Serum CoQ10 levels during the acute phase in patients admitted to the CCU had similar independent of the diagnosis. CoQ10 levels were significantly lower in patients with in-hospital mortalities than in survivors (0.43 ± 0.19 vs. 0.55 ± 0.35 mg/L, P = 0.04). In patients admitted to the CCU, CoQ10 levels were negatively associated with age and C-reactive protein levels, and positively associated with body mass index, total cholesterol, and high-density lipoprotein cholesterol levels. Low CoQ10 levels correlated with low diastolic blood pressure. Multivariate logistic regression analysis demonstrated that low CoQ10 levels were an independent predictor of in-hospital mortality. Low serum CoQ10 levels during acute phase are significantly associated with cardiovascular risk and in-hospital mortality in patients admitted to the CCU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25(1):220–221

    Article  CAS  PubMed  Google Scholar 

  2. Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M, Wang Y, Liu Y, Luo H, Xu Z, Mori M, Kitano M, Hosoe K, Takeda T, Usami S, Higuchi K (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20(16):2606–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Folkers K, Vadhanavikit S, Mortensen SA (1985) Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci USA 82(3):901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munkholm H, Hansen HH, Rasmussen K (1999) Coenzyme Q10 treatment in serious heart failure. BioFactors 9(2–4):285–289

    Article  CAS  PubMed  Google Scholar 

  5. Keogh A, Fenton S, Leslie C, Aboyoun C, Macdonald P, Zhao YC, Bailey M, Rosenfeldt F (2003) Randomised double-blind, placebo-controlled trial of coenzyme Q, therapy in class II and III systolic heart failure. Heart Lung Circ 12(3):135–141

    Article  PubMed  Google Scholar 

  6. Rosenfeldt F, Marasco S, Lyon W, Wowk M, Sheeran F, Bailey M, Esmore D, Davis B, Pick A, Rabinov M, Smith J, Nagley P, Pepe S (2005) Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J Thorac Cardiovasc Surg 129(1):25–32

    Article  CAS  PubMed  Google Scholar 

  7. Dai YL, Luk TH, Yiu KH, Wang M, Yip PM, Lee SW, Li SW, Tam S, Fong B, Lau CP, Siu CW, Tse HF (2011) Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis 216(2):395–401

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Singh RB, Saxena M, Niaz MA, Josh SR, Chattopadhyay P, Mechirova V, Pella D, Fedacko J (2007) Effect of carni Q-gel (ubiquinol and carnitine) on cytokines in patients with heart failure in the Tishcon study. Acta Cardiol 62(4):349–354

    Article  PubMed  Google Scholar 

  9. Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT (2002) Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res 36(4):389–397

    Article  CAS  PubMed  Google Scholar 

  10. Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT (2012) The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. ScientificWorldJournal 2012:792756

    PubMed  PubMed Central  Google Scholar 

  11. Molyneux SL, Florkowski CM, George PM, Pilbrow AP, Frampton CM, Lever M, Richards AM (2008) Coenzyme Q10: an independent predictor of mortality in chronic heart failure. J Am Coll Cardiol 52(18):1435–1441

    Article  CAS  PubMed  Google Scholar 

  12. Sarter B (2002) Coenzyme Q10 and cardiovascular disease: a review. J Cardiovasc Nurs 16(4):9–20

    Article  PubMed  Google Scholar 

  13. Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A (2001) HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem 47(2):256–265

    CAS  PubMed  Google Scholar 

  14. Lu J, Frank EL (2007) Measurement of coenzyme Q10 in clinical practice. Clin Chim Acta 384(1–2):180–181

    Article  CAS  PubMed  Google Scholar 

  15. Sakamoto N, Hoshino Y, Misaka T, Mizukami H, Suzuki S, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2014) Serum tenascin-C level is associated with coronary plaque rupture in patients with acute coronary syndrome. Heart Vessels 29(2):165–170

    Article  PubMed  Google Scholar 

  16. Nakamura A, Miura S, Shiga Y, Norimatsu K, Miyase Y, Suematsu Y, Mitsutake R, Saku K (2015) Is pentraxin 3 a biomarker, a player, or both in the context of coronary atherosclerosis and metabolic factors? Heart Vessels 30(6):752–761

    Article  PubMed  Google Scholar 

  17. Lee BJ, Huang YC, Chen SJ, Lin PT (2012) Effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, and homocysteine) in patients with coronary artery disease. Nutrition 28(7–8):767–772

    Article  CAS  PubMed  Google Scholar 

  18. Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, Barie PS, Rubin AL (2001) Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 29(8):1563–1568

    Article  CAS  PubMed  Google Scholar 

  19. Chien JY, Jerng JS, Yu CJ, Yang PC (2005) Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med 33(8):1688–1693

    Article  CAS  PubMed  Google Scholar 

  20. Lagrost L, Girard C, Grosjean S, Masson D, Deckert V, Gautier T, Debomy F, Vinault S, Jeannin A, Labbe J, Bonithon-Kopp C (2014) Low preoperative cholesterol level is a risk factor of sepsis and poor clinical outcome in patients undergoing cardiac surgery with cardiopulmonary bypass. Crit Care Med 42(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  21. Marinari S, Manigrasso MR, De Benedetto F (2013) Effects of nutraceutical diet integration, with coenzyme Q10 (Q-Ter multicomposite) and creatine, on dyspnea, exercise tolerance, and quality of life in COPD patients with chronic respiratory failure. Multidiscip Respir Med 8(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, Jacotot B, Gherardi R (1996) Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 42(3):333–337

    Article  CAS  PubMed  Google Scholar 

  23. Dai YL, Luk TH, Siu CW, Yiu KH, Chan HT, Lee SW, Li SW, Tam S, Fong B, Lau CP, Tse HF (2010) Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol 10(2):130–138

    Article  CAS  PubMed  Google Scholar 

  24. Zlatohlavek L, Vrablik M, Grauova B, Motykova E, Ceska R (2012) The effect of coenzyme Q10 in statin myopathy. Neuro Endocrinol Lett 33(Suppl 2):98–101

    CAS  PubMed  Google Scholar 

  25. Celik T, Bugan B (2011) Unending debate: statin dilemma in the management of heart failure. Int J Cardiol 146(1):92–93

    Article  PubMed  Google Scholar 

  26. Ashton E, Windebank E, Skiba M, Reid C, Schneider H, Rosenfeldt F, Tonkin A, Krum H (2011) Why did high-dose rosuvastatin not improve cardiac remodeling in chronic heart failure? Mechanistic insights from the UNIVERSE study. Int J Cardiol 146(3):404–407

    Article  PubMed  Google Scholar 

  27. Lyons KS, McVeigh GE, Harbinson MT (2011) Statins in heart failure-where do we stand? Cardiovasc Drugs Ther 25(1):99–104

    Article  CAS  PubMed  Google Scholar 

  28. De Gennaro L, Brunetti ND, Correale M, Buquicchio F, Caldarola P, Di Biase M (2014) Statin therapy in heart failure: for good, for bad, or indifferent? Curr Atheroscler Rep 16(1):377

    Article  PubMed  Google Scholar 

  29. Toyama K, Sugiyama S, Oka H, Iwasaki Y, Sumida H, Tanaka T, Tayama S, Jinnouchi H, Ogawa H (2014) Statins combined with exercise are associated with the increased renal function mediated by high-molecular-weight adiponectin in coronary artery disease patients. J Cardiol 64(2):91–97

    Article  PubMed  Google Scholar 

  30. Cocchi MN, Giberson B, Berg K, Salciccioli JD, Naini A, Buettner C, Akuthota P, Gautam S, Donnino MW (2012) Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients. Resuscitation 83(8):991–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Ayako Onodera for their assistance with the clinical research aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Miyazaki.

Ethics declarations

Conflict of interest

This research study was not funded by any grant from any funding agency in the public, commercial, or not-for-profit sectors. Dr. Daida received consulting fee from KANEKA CORPORATION. Dr. Kasai received unrestricted research funding from Philips Respironics, Teijin Home Healthcare, and Fukuda Denshi. The remaining authors report no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M., Miyazaki, T., Takagi, A. et al. Low circulating coenzyme Q10 during acute phase is associated with inflammation, malnutrition, and in-hospital mortality in patients admitted to the coronary care unit. Heart Vessels 32, 668–673 (2017). https://doi.org/10.1007/s00380-016-0923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0923-x

Keywords

Navigation