Skip to main content
Log in

GABAB receptors are expressed in human aortic smooth muscle cells and regulate the intracellular Ca2+ concentration

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca2+ concentration ([Ca2+]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca2+]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca2+]i in cultured HASMCs regardless of whether Ca2+ was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca2+]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GABA:

γ-Aminobutyric acid

GABABR1 :

γ-Aminobutyric acid type B receptor subunit one

GABABR2 :

γ-Aminobutyric acid type B receptor subunit two

HASMCs:

Human aortic smooth muscle cells

VSMCs:

Vascular smooth muscle cells

PCR:

Polymerase chain reaction

mRNA:

Messenger RNA

G proteins:

Guanine nucleotide-binding proteins

[Ca2+]i:

Intracellular Ca2+ concentration

SMCM:

Smooth muscle cell medium

LAD:

Left anterior descending artery

References

  1. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682

    Article  CAS  PubMed  Google Scholar 

  2. White JH, Wise A, Marshall FH (2002) Heterodimerization of gamma-aminobutyric acid B receptor subunits as revealed by the yeast two-hybrid system. Methods 27:301–310

    Article  CAS  PubMed  Google Scholar 

  3. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679

    Article  CAS  PubMed  Google Scholar 

  4. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  CAS  PubMed  Google Scholar 

  5. Gassmann M, Bettler B (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    Article  CAS  PubMed  Google Scholar 

  6. Ong J, Kerr DI (2000) Recent advances in GABAB receptors: from pharmacology to molecular biology. Acta Pharmacol Sin 21:111–123

    CAS  PubMed  Google Scholar 

  7. Isomoto S, Kaibara M, Sakurai-Yamashita Y, Nagayama Y, Uezono Y, Yano K, Taniyama K (1998) Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem Biophys Res Commun 253:10–15

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz DA, Barry G, Eliasof SD, Petroski RE, Conlon PJ, Maki RA (2000) Characterization of gamma-aminobutyric acid receptor GABAB(1e), a GABAB(1) splice variant encoding a truncated receptor. J Biol Chem 275:32174–32181

    Article  CAS  PubMed  Google Scholar 

  9. Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABAB receptors—the first 7TM heterodimers. Trends Pharmacol Sci 20:396–399

    Article  CAS  PubMed  Google Scholar 

  10. Tabata T, Kano M (2010) GABAB receptor-mediated modulation of metabotropic glutamate signaling and synaptic plasticity in central neurons. Adv Pharmacol 58:149–173

    Article  CAS  PubMed  Google Scholar 

  11. Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150

    Article  CAS  PubMed  Google Scholar 

  12. Mizuta K, Osawa Y, Mizuta F, Xu D, Emala CW (2008) Functional expression of GABAB receptors in airway epithelium. Am J Respir Cell Mol Biol 39:296–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhou Z, Sun H, Li X, Li Y, Zhao S, Zhang D, Yao Z, Li J (2010) A local GABAergic system is functionally expressed in human fallopian tube. Biochem Biophys Res Commun 398:237–241

    Article  CAS  PubMed  Google Scholar 

  14. Osawa Y, Xu D, Sternberg D, Sonett JR, D’Armiento J, Panettieri RA, Emala CW (2006) Functional expression of the GABAB receptor in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 291:L923–L931

    Article  CAS  PubMed  Google Scholar 

  15. Parramon M, Gonzalez MP, Herrero MT, Oset-Gasque MJ (1995) GABAB receptors increase intracellular calcium concentrations in chromaffin cells through two different pathways: their role in catecholamine secretion. J Neurosci Res 41:65–72

    Article  CAS  PubMed  Google Scholar 

  16. Guatteo E, Bengtson CP, Bernardi G, Mercuri NB (2004) Voltage-gated calcium channels mediate intracellular calcium increase in weaver dopaminergic neurons during stimulation of D2 and GABAB receptors. J Neurophysiol 92:3368–3374

    Article  CAS  PubMed  Google Scholar 

  17. New DC, An H, Ip NY, Wong YH (2006) GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience 137:1347–1358

    Article  CAS  PubMed  Google Scholar 

  18. Harvey RD (2012) Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol 208:299–316

    Article  CAS  PubMed  Google Scholar 

  19. Cucina A, Fuso A, Coluccia P, Cavallaro A (2008) Nicotine inhibits apoptosis and stimulates proliferation in aortic smooth muscle cells through a functional nicotinic acetylcholine receptor. J Surg Res 150:227–235

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Zhao T, Xin H, Ye LH, Zhang X, Tanaka H, Nakamura A, Kohama K (2004) Nicotinic acetylcholine receptor alpha7 subunit mediates migration of vascular smooth muscle cells toward nicotine. J Pharmacol Sci 94:334–338

    Article  CAS  PubMed  Google Scholar 

  21. Gu Z, Fonseca V, Hai CM (2013) Nicotinic acetylcholine receptor mediates nicotine-induced actin cytoskeletal remodeling and extracellular matrix degradation by vascular smooth muscle cells. Vasc Pharmacol 58:87–97

    Article  CAS  Google Scholar 

  22. Garcia-Cazarin ML, Smith JL, Olszewski KA, McCune DF, Simmerman LA, Hadley RW, Kraner SD, Piascik MT (2008) The alpha1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells. J Mol Signal 3:6

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chotani MA, Mitra S, Su BY, Flavahan S, Eid AH, Clark KR, Montague CR, Paris H, Handy DE, Flavahan NA (2004) Regulation of alpha(2)-adrenoceptors in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286:H59–H67

    Article  CAS  PubMed  Google Scholar 

  24. Johnson R, Webb JG, Newman WH, Wang Z (2006) Regulation of human vascular smooth muscle cell migration by beta-adrenergic receptors. Am Surg 72:51–54

    PubMed  Google Scholar 

  25. Feletou M, Dellazuana O, Duhault J (1994) Serotoninergic receptor subtype in coronary artery smooth muscle from young and atherosclerotic rabbit. J Pharmacol Exp Ther 268:124–132

    CAS  PubMed  Google Scholar 

  26. Watanabe T, Pakala R, Koba S, Katagiri T, Benedict CR (2001) Lysophosphatidylcholine and reactive oxygen species mediate the synergistic effect of mildly oxidized LDL with serotonin on vascular smooth muscle cell proliferation. Circulation 103:1440–1445

    Article  CAS  PubMed  Google Scholar 

  27. Vanhoutte PM (1991) Serotonin, hypertension and vascular disease. Neth J Med 38:35–42

    CAS  PubMed  Google Scholar 

  28. Igarashi A, Zadzilka N, Shirahata M (2009) Benzodiazepines and GABA-GABAA receptor system in the cat carotid body. Adv Exp Med Biol 648:169–175

    Article  CAS  PubMed  Google Scholar 

  29. Mizuta K, Mizuta F, Xu D, Masaki E, Panettieri RA Jr, Emala CW (2011) Gi-coupled gamma-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle. Am J Respir Cell Mol Biol 45:1232–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chen X, Liu H, Pan Z, Miao Q, Zhang Y (2012) The inhibitory effects of m-nisoldipine on the 5-hydroxytryptamine-induced proliferation of pulmonary artery smooth muscle cells via Ca2+ antagonism and antioxidant mechanisms. Eur J Pharmacol 686:32–40

    Article  CAS  PubMed  Google Scholar 

  31. Scott JA, Xie L, Li H, Li W, He JB, Sanders PN, Carter AB, Backs J, Anderson ME, Grumbach IM (2012) The multifunctional Ca2+/calmodulin-dependent kinase II regulates vascular smooth muscle migration through matrix metalloproteinase 9. Am J Physiol Heart Circ Physiol 302:H1953–H1964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pande J, Dimmers G, Akolkar G, Skelley L, Samson SE, Grover AK (2012) Store operated Ca2+ entry dependent contraction of coronary artery smooth muscle: inhibition by peroxide pretreatment. Cell Calcium 51:149–154

    Article  CAS  PubMed  Google Scholar 

  33. Linde CI, Karashima E, Raina H, Zulian A, Wier WG, Hamlyn JM, Ferrari P, Blaustein MP, Golovina VA (2012) Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats. Am J Physiol Heart Circ Physiol 302:H611–H620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sharma RV, Bhalla RC (1988) Calcium and abnormal reactivity of vascular smooth muscle in hypertension. Cell Calcium 9:267–274

    Article  CAS  PubMed  Google Scholar 

  35. Aritomi S, Konda T, Yoshimura M (2012) L/N-type calcium channel blocker suppresses reflex aldosterone production induced by antihypertensive action. Heart Vessels 27:419–423

    Article  PubMed  Google Scholar 

  36. Wiecha J, Schlager B, Voisard R, Hannekum A, Mattfeldt T, Hombach V (1997) Ca(2+)-activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments. Basic Res Cardiol 92:233–239

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Zhang Q, Zhao S, Wei M, Shenghui Z, Cong H, Ouda H, Odajima K, Takemura H (1997) Responsiveness of cytosolic free calcium concentration in cultured rat pulmonary arterial smooth muscle cells: confocal microscopic measurement. Res Commun Mol Pathol Pharmacol 97:47–52

    CAS  PubMed  Google Scholar 

  38. Miyagawa K, Vidgoff J, Hermsmeyer K (1997) Ca2+ release mechanism of primate drug-induced coronary vasospasm. Am J Physiol 272:H2645–H2654

    CAS  PubMed  Google Scholar 

  39. Xi Q, Umstot E, Zhao G, Narayanan D, Leffler CW, Jaggar JH (2010) Glutamate regulates Ca2+ signals in smooth muscle cells of newborn piglet brain slice arterioles through astrocyte- and heme oxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol 298:H562–H569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Padgett CL, Slesinger PA (2010) GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol 58:123–147

    Article  CAS  PubMed  Google Scholar 

  41. Wang XP, Chen YG, Qin WD, Zhang W, Wei SJ, Wang J, Liu FQ, Gong L, An FS, Zhang Y, Chen ZY, Zhang MX (2011) Arginase I attenuates inflammatory cytokine secretion induced by lipopolysaccharide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:1853–1860

    Article  CAS  PubMed  Google Scholar 

  42. Cheng ZY, Chebib M, Schmid KL (2012) Identification of GABA receptors in chick cornea. Mol Vis 18:1107–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Ryan JS, Baldridge WH, Kelly ME (1999) Purinergic regulation of cation conductances and intracellular Ca2+ in cultured rat retinal pigment epithelial cells. J Physiol 520(Pt 3):745–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Uehara Y, Azuma Y, Minai K, Yoshida H, Yoshimura M, Shimizu M (2012) Endothelin-1 prolongs intracellular calcium transient decay in neonatal rat cardiac myocytes. Heart Vessels 27:98–105

    Article  PubMed  Google Scholar 

  45. Xiao H, Wang M, Du Y, Yuan J, Zhao G, Tu D, Liao YH (2012) Agonist-like autoantibodies against calcium channel in patients with dilated cardiomyopathy. Heart Vessels 27:486–492

    Article  PubMed  Google Scholar 

  46. Kobayashi Y, Fukuda T, Tanaka M, Matsui T (2012) The anti-atherosclerotic di-peptide, Trp-His, inhibits the phosphorylation of voltage-dependent L-type Ca(2+) channels in rat vascular smooth muscle cells. FEBS Open Bio 2:83–88

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from National Natural Science Foundation of China (No. 81271038), grant from the Department of Science and Technology of Shandong Province of China (No. ZR2012HM022) to ZYC, grant from National Nature Science Foundation of China (No. 80200212) and grant from the Department of Science and Technology of Shandong Province of China (No. ZR2012HQ029) to XPW.

Conflict of interest

The authors have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ying Cheng.

Additional information

X.-P. Wang, Z.-Y. Cheng made the same contribution to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XP., Cheng, ZY. & Schmid, K.L. GABAB receptors are expressed in human aortic smooth muscle cells and regulate the intracellular Ca2+ concentration. Heart Vessels 30, 249–257 (2015). https://doi.org/10.1007/s00380-014-0499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0499-2

Keywords

Navigation