Skip to main content
Log in

Persistence of Summer Sea Surface Temperature Anomalies in the Midlatitude North Pacific and Its Interdecadal Variability

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The present study investigates the persistence of summer sea surface temperature anomalies (SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time (approximately 8–14 months) around the Kuroshio Extension (KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.

摘要

大尺度海温的持续性可以影响大气环流和天气的变化. 海表温度异常(SSTAs)的持续性具有很强的季节依赖. 对于北太平洋, 人们已经对冬季SSTAs的持续性进行了较为全面的研究, 取得了一致的结论. 但是, 对夏季SSTAs的持续性特征及机制的研究却存在相互矛盾的观点. 前人主要是针对人为选取区域的SSTAs或是某一海域SSTAs主模态的持续性进行研究, 而这两种方法会对结果产生不确定性影响. 因此, 本文对每个空间格点SSTAs的持续性都进行了分析和计算, 从而明确给出了中纬度北太平洋夏季SSTAs持续性的空间分布, 并对其物理机制及年代际变化进行了分析讨论. 结果表明, 中纬度北太平洋夏季SSTAs可以持续较长的时间, 黑潮延伸体区域的持续时间可以达到8-14个月. 因为夏季中高纬度海洋混合层太浅这使得表层海温很难受到深层海洋变化的影响, 所以黑潮延伸体区域SSTAs较长的持续性主要与局地大气强迫密切相关. 大气环流, 潜热, 长波辐射通量的变化都对SSTAs较长的持续性有所贡献, 其中, 长波辐射通量是主要因子. 而潜热通量和短波热射通量的影响并不显著. 黑潮延伸体区域夏季SSTAs的持续性还存在显著的年代际变化, 其持续性在1950–82很弱, 而在1983-2016显著增强. 大气环流, 潜热, 长波辐射通量的变化仍然是影响这一年代际变化的主要因素, 三者对SSTAs的强迫作用在1982年以后显著增强.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achuthavarier, D., S. D. Schubert, and Y. V. Vikhliaev, 2017: North Pacific decadal variability: Insights from a biennial ENSO environment. Climate Dyn., 49, 1379–1397, https://doi.org/10.1007/s00382-016-3391-1.

    Article  Google Scholar 

  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137, http://dx.doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    Article  Google Scholar 

  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 2419–2433.

    Article  Google Scholar 

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, http://dx.doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2. 0.CO;2.

    Article  Google Scholar 

  • Chen, D., H. J. Wang, Y. Song, and Y. Gao, 2016: A multidecadal oscillation in the northeastern Pacific. Atmospheric and Oceanic Science Letters, 9(4), 315–326, http://dx.doi.org/10.1080/16742834.2016.1194716.

    Article  Google Scholar 

  • Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8, 233–246, http://dx.doi.org/10.1175/1520-0485(1978)008<0233: POSLPA>2.0.CO;2.

    Article  Google Scholar 

  • Ding, R. Q., and J. P. Li, 2009: Decadal and seasonal dependence of North Pacific sea surface temperature persistence. J. Geophys. Res., 114, D01105, http://dx.doi.org/10.1029/2008JD010723.

    Google Scholar 

  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72, http://dx.doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    Article  Google Scholar 

  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, http://dx.doi.org/10.1111/j.2153-3490.1977.tb00740.x.

    Article  Google Scholar 

  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606, https://doi.org/10.1175/JCLI4021.1.

    Article  Google Scholar 

  • Hanawa, K., and S. Sugimoto, 2004: ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys. Res. Lett., 31, L10303, https://doi.org/10.1029/2004GL019904.

    Article  Google Scholar 

  • Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, http://dx.doi.org/10.1175/1520-0477(1996)077<0437: TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K.-M., K.-M. Kim, and S. S. P. Chen, 2002: Potential predictability of seasonal precipitation over the United States from canonical ensemble correlation predictions. Geophys. Res. Lett., 29, 1-1–1-4, https://doi.org/10.1029/2001GL014263.

    Article  Google Scholar 

  • Liu, Z. Y., and L. X. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 1859–1882, http://dx.doi.org/10.1175/1520-0442 (2004)017<1859:ARTNPS>2.0.CO;2.

    Article  Google Scholar 

  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 35–44, http://dx.doi.org/10.1023/A:1015820616384.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079, http://dx.doi.org/10.1175/1520-0477(1997) 078<1069:APICOW>2.0.CO;2.

    Article  Google Scholar 

  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Progress in Oceanography, 47, 355–379, https://doi.org/10.1016/S0079-6611(00)00044-6.

    Article  Google Scholar 

  • Monterey, G. I., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA NESDIS,92 pp.

    Google Scholar 

  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 5952–5955, http://dx.doi.org/10.1029/JC075i030p05952.

    Article  Google Scholar 

  • Namias, J., and R. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797–798, http://dx.doi.org/10.1029/JC079i006p00797.

    Article  Google Scholar 

  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 4399–4427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    Article  Google Scholar 

  • Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 1404–1413, http://dx.doi.org/10.1175/1520-0442(2003) 16<1404:COSSTA>2.0.CO;2.

    Article  Google Scholar 

  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of clouds in summertime atmosphere-ocean interactions over the North Pacific. J. Climate, 11, 2482–2490.

    Article  Google Scholar 

  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 1486–1502, http://dx.doi.org/10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.

    Article  Google Scholar 

  • Sugimoto, S., and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett., 32, L01606, https://doi.org/10.1029/2004GL021410.

    Google Scholar 

  • Tomita, T., S.-P. Xie, and M. Nonaka, 2002: Estimates of surface and subsurface forcing for decadal sea surface temperature variability in the mid-latitude North Pacific. J. Meteor. Soc. Japan, 80, 1289–1300.

    Article  Google Scholar 

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmospheric–ocean variations in the Pacific. Climate Dyn., 9, 303–319, http://dx.doi.org/10.1007/BF00204745.

    Article  Google Scholar 

  • Wallace, J. M., Y. Zhang, and K.-H. Lau, 1993: Structure and seasonality of interannual and interdecadal variability of the geopotential height and temperature fields in the Northern Hemisphere troposphere. J. Climate, 6, 2063–2082, https://doi.org/10.1175/1520-0442(1993)006 <2063:SASOIA>2.0.CO;2.

    Article  Google Scholar 

  • Wu, R. G., and J. L. Kinter III, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, http://dx.doi.org/10.1029/2009JD012579.

    Google Scholar 

  • Xiao, D., and J. P. Li, 2007: Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970s. J. Geophys. Res., 112, D24S22, https://doi.org/10.1029/2007JD008956.

    Article  Google Scholar 

  • Xie, S. P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30, 2798–2813, http://dx.doi.org/10.1175/1520-0485(2000)030<2798:ITVITN>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSOlike interdecadal variability: 1900–93. J. Climate, 10, 1004–1020, http://dx.doi.org/10.1175/1520-0442(1997)010&lt;1004: ELIV&gt;2.0.CO;2.

    Article  Google Scholar 

  • Zhang, R.-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Ni˜no change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879–883, http://dx.doi.org/10.1038/36081.

    Article  Google Scholar 

  • Zhao, X., and J. P. Li, 2010: Winter-to-winter recurrence of sea surface temperature anomalies in the Northern Hemisphere. J. Climate, 23, 3835–3854, https://doi.org/10.1175/2009 JCLI2583.1.

    Article  Google Scholar 

  • Zhao, X., and J. P. Li, 2012a: Winter-to-winter recurrence and nonwinter-to-winter recurrence of SST anomalies in the central North Pacific. J. Geophys. Res., 117, C05027, https://doi.org/10.1029/2011JC007845.

    Google Scholar 

  • Zhao, X., and J. P. Li, 2012b: Winter-to-winter recurrence of atmospheric circulation anomalies in the central North Pacific. J. Geophys. Res., 117, C12023, http://dx.doi.org/10.1029/2012 JC008248.

    Google Scholar 

  • Zhao, X, J. P. Li, and W. J. Zhang, 2012: Summer persistence barrier of sea surface temperature anomalies in the central western north pacific. Adv. Atmos. Sci., 29, 1159–1173, https://doi.org/10.1007/s00376-012-1253-2.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41375094 and 41406028), the Basic Scientific Research Fund for National Public Institutes of China (Grant No. GY0215P04), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102), the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401), and the Foundation for Innovative Research Groups of the NSFC (Grant No. 41421005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yang, G. & Wang, J. Persistence of Summer Sea Surface Temperature Anomalies in the Midlatitude North Pacific and Its Interdecadal Variability. Adv. Atmos. Sci. 35, 868–880 (2018). https://doi.org/10.1007/s00376-017-7184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7184-1

Key words

关键词

Navigation