Skip to main content
Log in

Relationships between the extratropical ENSO precursor and leading modes of atmospheric variability in the Southern Hemisphere

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Previous studies suggest that the atmospheric precursor of El Niño-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901.

    Article  Google Scholar 

  • Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 1212–1216, doi: 10.1002/grl.50200.

    Article  Google Scholar 

  • Boschat, G., P. Terray, and S. Masson, 2013: Extratropical forcing of ENSO. Geophys. Res. Lett., 40(8), 1605–1611.

    Article  Google Scholar 

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560.

    Article  Google Scholar 

  • Compo, G. P., and P. D. Sardeshmukh, 2004: Storm track predictability on seasonal and decadal scales. J. Climate, 17, 3701–3720.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, S. P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annual Review of Marine Science, 2, 115–143.

    Article  Google Scholar 

  • DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17, 3225–3235.

    Article  Google Scholar 

  • Ding, H., R. J. Greatbatch, and G. Gollan, 2015c: Tropical impact on the interannual variability and long-term trend of the Southern Annular Mode during austral summer from 1960/1961 to 2001/2002. Climate Dyn., 44, 2215–2258.

    Article  Google Scholar 

  • Ding, H., R. J. Greatbatch, H. Lin, F. Hansen, G. Gollan, and T. Jung, 2016: Austral winter external and internal atmospheric variability between 1980 and 2014. Geophys. Res. Lett., 43, 2234–2239, doi: 10.1002/2016GL067862.

    Article  Google Scholar 

  • Ding, Q. H., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the Southern Annular Mode. J. Climate, 25(18), 6330–6348.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, Y. H. Tseng, C. Sun, and Y. P. Guo, 2015a: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res., 120, 27–45, doi: 10.1002/2014JD022221.

    Google Scholar 

  • Ding, R. Q., J. P. Li, and Y. H. Tseng, 2015b: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034.

    Article  Google Scholar 

  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–462, doi: 10.1029/1999GL900003.

    Article  Google Scholar 

  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101.

    Article  Google Scholar 

  • Jin, F. F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.

    Article  Google Scholar 

  • Jin, F. F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Climate, 2, 1239–1252.

    Article  Google Scholar 

  • Kidson, J. W., and J. A. Renwick, 2002: The southern hemisphere evolution of ENSO during 1981–99. J. Climate, 15, 847–863.

    Article  Google Scholar 

  • Kwok, R., and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 15, 487–501.

    Article  Google Scholar 

  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276–287.

    Article  Google Scholar 

  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745.

    Article  Google Scholar 

  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 3599–3610.

    Article  Google Scholar 

  • Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877–901.

    Article  Google Scholar 

  • Mo, K. C., and J. N. Paegle, 2001: The Pacific-South American modes and their downstream effects. International Journal of Climatology, 21(10), 1211–1229.

    Article  Google Scholar 

  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 3853–3857.

    Article  Google Scholar 

  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446–469.

    Article  Google Scholar 

  • Rogers, J. C., 1981: The North Pacific oscillation. J. Climatol., 1, 39–57.

    Article  Google Scholar 

  • Schneider, N., and B. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 4355–4373.

    Article  Google Scholar 

  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 2960–2978.

    Article  Google Scholar 

  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA. J. Climate, 15, 2340–2358.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003b: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 2653–2667.

    Article  Google Scholar 

  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003a: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675.

    Article  Google Scholar 

  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

    Google Scholar 

  • Yu, J. Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708–720.

    Article  Google Scholar 

  • Yuan, X. J., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarctic Science, 16, 415–425.

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506013), the 973 project of China (Grant No. 2012CB955200), the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010303), and the National Natural Science Foundation of China (Grant Nos. 41575075, 91437216 and 91637312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Ding, R., Wu, Z. et al. Relationships between the extratropical ENSO precursor and leading modes of atmospheric variability in the Southern Hemisphere. Adv. Atmos. Sci. 34, 360–370 (2017). https://doi.org/10.1007/s00376-016-6016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6016-z

Key words

Navigation