Skip to main content
Log in

Distinctive precursory air–sea signals between regular and super El Niños

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Statistically different precursory air–sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958–2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly (u′). This is attributed to the difference in the thermocline depth anomaly (D′) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D′ is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161.

    Article  Google Scholar 

  • Carton, J. A., and B. S. Giese, 2008: A Reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Chao, J. P., and R. H. Zhang, 1990: The air-sea interaction waves in the tropics and their instabilities. Acta Meteorologica Sinica, 48, 46–54. (in Chinese)

    Google Scholar 

  • Chen, D. K., and Coauthors, 2015a: Strong influence of westerly wind bursts on El Niño diversity. Nature Geosci., 8, 339–345.

    Article  Google Scholar 

  • Chen, L., T. Li, and Y. Q. Yu, 2015b: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250–3274.

    Article  Google Scholar 

  • Chen, L., Y. Q. Yu, and W.-P. Zheng, 2016: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2, Climate Dyn., 1–18, doi: 10.1007/s00382-016-2988-8.

    Google Scholar 

  • Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266.

    Article  Google Scholar 

  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and lowfrequency equatorial ocean response to wind forcing: The “tilt” and “warm water volume” modes. J. Phys. Oceanogr., 40, 121–137.

    Article  Google Scholar 

  • Ding, R. Q., J. P. Li, and Y.-H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034.

    Article  Google Scholar 

  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238.

    Article  Google Scholar 

  • Fedorov, A. V., S. N. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 1381–1401.

    Article  Google Scholar 

  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J. Atmos. Sci., 64, 3281–3295.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Hirst, A. C., 1988: Slow instabilities in tropical ocean basin-global atmosphere models. J. Atmos. Sci., 45, 830–852.

    Article  Google Scholar 

  • Hong, L. C., Lin Ho, and F. F. Jin, 2014: A southern hemisphere booster of super El Niño. Geophys. Res. Lett., 41, 2142–2149.

    Article  Google Scholar 

  • Hu, S.-N., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. U. S. A., 113, 2005–2010.

    Article  Google Scholar 

  • Hu, S.-N., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys. Res. Lett., 41, 4654–4663, doi: 10.1002/2014 GL059573.

    Article  Google Scholar 

  • Huang, B.-Y., Y. Xue, D. X. Zhang, A. Kumar, and M. J. McPhaden, 2010: The NCEP GODAS ocean analysis of the tropical pacific mixed layer heat budget on seasonal to interannual time scales. J. Climate, 23, 4901–4925.

    Article  Google Scholar 

  • Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, doi: 10.1007/BF02656915.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808.

    Article  Google Scholar 

  • Jin, F. F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120, doi: 10.1029/2002GL016356.

    Article  Google Scholar 

  • Jin, F. F., L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemblemean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, doi: 10.1029/2006GL027372.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Progr. Oceanogr., 69, 181–217.

    Article  Google Scholar 

  • Kumar, A., and Z. Z. Hu, 2012: Uncertainty in the oceanatmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575–588.

    Article  Google Scholar 

  • Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 1243–1258.

    Article  Google Scholar 

  • Latif, M., V. A. Semenov, and W. Park, 2015: Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489–500.

    Article  Google Scholar 

  • Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601–620.

    Article  Google Scholar 

  • Levine, A. F., and F.-F. Jin, 2010: Noise-induced instability in the ENSO recharge oscillator. J. Atmos. Sci., 67, 529–542.

    Article  Google Scholar 

  • Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 36–46, doi: 10.1007/BF02919166

    Article  Google Scholar 

  • Li, J. Y., B. Q. Liu, J. D. Li, and J. Y. Mao, 2015: A comparative study on the dominant factors responsible for the weakerthan- expected El Niño event in 2014. Adv. Atmos. Sci., 32, 1381–1390, doi: 10.1007/s00376-015-4269-6.

    Article  Google Scholar 

  • Li, T., 1997: Phase transition of the El Niño-southern oscillation: A stationary SST mode. J. Atmos. Sci., 54, 2872–2887.

    Article  Google Scholar 

  • Li, T., Y. S. Zhang, E. Lu, and D. L. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, 25-1–25-4.

    Google Scholar 

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950–954.

    Article  Google Scholar 

  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 6476–6483.

    Article  Google Scholar 

  • Min, Q. Y., J. Z. Su, R. H. Zhang, and X. Y. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 6762–6770, doi: 10.1002/2015GL064899.

    Article  Google Scholar 

  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.

    Article  Google Scholar 

  • Ramesh, N., and R. Murtugudde, 2013: All flavours of El Niño have similar early subsurface origins. Nature Clim. Change, 3, 42–46.

    Article  Google Scholar 

  • Rong, X. Y., R. H. Zhang, T. Li, and J. Z. Su, 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894–907.

    Article  Google Scholar 

  • Russell, D. R., 2006: Development of a time-domain, variableperiod surface-wave magnitude measurement procedure for application at regional and teleseismic distances, Part I: Theory. Bull. Seismol. Soc. Am., 96, 665–677.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Su, J. Z., R. H. Zhang, T. Li, X. Y. Rong, J. S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617.

    Article  Google Scholar 

  • Su, J. Z., B. Q. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 9058–9064.

    Article  Google Scholar 

  • Takahashi, K., and B. Dewitte, 2016: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 46, 1627–1645, doi: 10.1007/s00382-015-2665-3.

    Article  Google Scholar 

  • Timmermann, A., F.-F. Jin, and J. Abschagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152–165.

    Article  Google Scholar 

  • Tollefson, J., 2014: El Niño tests forecasters. Nature, 508, 20–21.

    Article  Google Scholar 

  • Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997-98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 2633–2646.

    Article  Google Scholar 

  • Wang, B., and T. M. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.

    Article  Google Scholar 

  • Wang, L., T. Li, and T. J. Zhou, 2012: Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer. J. Climate, 25, 1619–1634.

    Article  Google Scholar 

  • Wyrtki, K., 1975: El Niño-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.

    Article  Google Scholar 

  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res.: Oceans, 90, 7129–7132.

    Article  Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Technical Report OA-2008-01, 64 pp.

    Google Scholar 

  • Yu, Y., and D.-Z. Sun, 2009: Response of ENSO and the mean state of the tropical Pacific to extratropical cooling and warming: A study using the IAP coupled model. J. Climate, 22, 5902–5917.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-southern oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi: 10.1029/2003 JD004457.

    Article  Google Scholar 

  • Zheng, F., L. H. Feng, and J. Zhu, 2015: An incursion of offequatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32, 731–742, doi: 10.1007/s00376-014-4080-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, T., Behera, S.K. et al. Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci. 33, 996–1004 (2016). https://doi.org/10.1007/s00376-016-5250-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5250-8

Keywords

Navigation