Skip to main content

Advertisement

Log in

Super El Niños in response to global warming in a climate model

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Extraordinarily strong El Niño events, such as those of 1982/1983 and 1997/1998, cause havoc with weather around the world, adversely influence terrestrial and marine ecosystems in a number of regions and have major socio-economic impacts. Here we show by means of climate model integrations that El Niño events may be boosted by global warming. An important factor causing El Niño intensification is warming of the western Pacific warm pool, which strongly enhances surface zonal wind sensitivity to eastern equatorial Pacific sea surface temperature anomalies. This in conjunction with larger and more zonally asymmetric equatorial Pacific upper ocean heat content supports stronger and longer lasting El Niños. The most intense events, termed Super El Niños, drive extraordinary global teleconnections which are associated with exceptional surface air temperature and rainfall anomalies over many land areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aceituno P et al (2008) The 1877–1878 El Niño episode: associated impacts in South America. Clim Chang 92:389–416

    Article  Google Scholar 

  • Bayr T et al (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2,747–2,763

    Article  Google Scholar 

  • Bellenger H et al (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1,999–2,018

    Article  Google Scholar 

  • Cai W et al (2003) Strong ENSO variability and a Super-ENSO pair in the CSIRO mark3 coupled climate model. Mon Weather Rev 131:1,189–1,210

    Article  Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116. doi:10.1038/nclimate2100

    Article  Google Scholar 

  • Cai W et al. (2015) Increasing frequency of extreme La Niña events induced by greenhouse warming. Nat Clim Chang 5: doi: 10.1038/NCLIMATE2492

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397

    Article  Google Scholar 

  • Davis M (2001) Late Victorian Holocausts: El Niño famines and the making of the third world. Verso, London

    Google Scholar 

  • Diaz HF, McCabe GJ (1999) A possible connection between the 1878 yellow fever epidemic in the southern United States and the 1877–78 El Niño episode. Bull Am Meteorol Soc 80:21–27

    Article  Google Scholar 

  • DiNezio PN et al (2009) Climate response of the equatorial pacific to global warming. J Clim 22:4873–4892

    Article  Google Scholar 

  • England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature 4:222–227. doi:10.1038/nclimate2106

    Google Scholar 

  • Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Fedorov AV et al (2006) The Pliocene paradox (mechanisms for a permanent El Nino). Science 312:1485–1489

    Article  Google Scholar 

  • Fedorov AV et al (2013) Patterns and mechanisms of early Pliocene warmth. Nature 496(43):43–49

    Article  Google Scholar 

  • Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett 37:L1880. doi:10.1029/2010GL044444

    Google Scholar 

  • Fu R et al (1992) Cirrus-cloud thermostat for tropical sea-surface temperatures tested using satellite data. Nature 358:394–397

    Article  Google Scholar 

  • Galeotti S et al (2010) Evidence for active El Nino Southern Oscillation variability in the Late Miocene greenhouse climate. Geology 38:419–422

  • Grodsky SA, Carton JA (2001) Intense surface currents in the tropical Pacific during 1996–1998. J Geophys Res 106(C8):16,673–16,684

    Article  Google Scholar 

  • Hong LC, LinHo, Jin F-F (2014) A Southern Hemisphere booster of super El Niño. Geophys Res Lett 41: doi: 10.1002/2014GL059370

  • Huber M (2008) A Hotter Greenhouse? Science 321:353–354

    Article  Google Scholar 

  • Huber M, Caballero R (2003) Eocene El Niño: evidence for robust tropical dynamics in the “hothouse”. Science 299:877–881

  • Ivany LC et al (2011) El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophs Res Lett 38:L6709. doi:10.1029/2011GL048635

  • Kang IS, Kug JS (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107(D19):4372. doi:10.1029/2001JD000393

    Article  Google Scholar 

  • Kiladis GN, Diaz HF (1986) An analysis of the 1877–78 ENSO episode and comparison with 1982–83. Mon Weather Rev 114:1,035–1,047

    Article  Google Scholar 

  • L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Chang 3:571–576

    Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci 106:20,578–20,583

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12(8):557–572. doi:10.1007/BF00207939

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2014) Assessing the 21st century shift in ENSO variability in terms of the Bjerknes stability index. J Clim 27:2,577–2,587

    Article  Google Scholar 

  • Mann ME et al (2000) Long-term variability in the ENSO and associated teleconnections. In: Diaz HF, Markgraf V (eds) ENSO: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 357–412

    Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38, L15709. doi:10.1029/2011GL048275

    Google Scholar 

  • Meggers BJ (1994) Archaeological evidence for the impact of Mega-Niño events on Amazonia during the past 2 millennia. Clim Chang 28:321–338

    Article  Google Scholar 

  • Meng Q et al (2012) Twentieth century walker circulation change: data analysis and model experiments. Clim Dyn 38:1,757–1,773

    Article  Google Scholar 

  • Neelin JD et al (1998) ENSO theory. J Geophys Res 103:14,261–14,290

    Article  Google Scholar 

  • Park W et al (2009) Tropical pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92

    Article  Google Scholar 

  • Philander SGH (1990) El Niño, La Niña, and the Southern Oscillation. Academic, San Diego

    Google Scholar 

  • Pierrehumbert RT (1995) Thermostats, radiator fins, and the local runaway greenhouse. J Atmos Sci 52:1,784–1,806

    Article  Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El-Nino. Nature 351:27–32

    Article  Google Scholar 

  • Semenov VA, Bengtsson L (2003) Modes of the wintertime Arctic temperature variability. Geophys Res Lett 30:1781. doi:10.1029/2003GL017112

  • Sohn BJ et al (2013) Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim Dyn 40:1,721–1,732

    Article  Google Scholar 

  • Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Chang 2:691–699

    Article  Google Scholar 

  • Taylor EK (1947) Tables for the determination of the significance of skewness and of the significance of the difference in the skewness of two independent distributions. Psychometrika 12:111–125

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tompkins A (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1,917–1,942

    Article  Google Scholar 

  • Trenberth KE, Hoar TJ (1996) The 1990–1995 El Niño-Southern Oscillation event: longest on record. Geophys Res Lett 23:57–60

    Article  Google Scholar 

  • Trenberth K, Hurrell J (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Vecchi GA et al (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  Google Scholar 

  • Wang B et al (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation. Proc Natl Acad Sci 110:5,347–5,352

    Article  Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309:758–761

  • Wunsch C (2009) A Perpetually Running ENSO in the Pliocene? J Clim 22:3506–3510

  • Yeh S-W et al (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by RACE and SACUS of the BMBF and SFB 754 Climate-Biogeochemistry Interactions in the Tropical Ocean of the DFG. A partial support of Russian Ministry of Education and Science (contract 14.В25.31.0026), Russian Foundation for Basic Research (14-05-00518) and Russian Science Foundation (14-17-00700) is acknowledged. The integrations were performed at the Computing Centre of Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojib Latif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, M., Semenov, V.A. & Park, W. Super El Niños in response to global warming in a climate model. Climatic Change 132, 489–500 (2015). https://doi.org/10.1007/s10584-015-1439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1439-6

Keywords

Navigation