Skip to main content
Log in

Comparison of cloud properties between cloudsat retrievals and airplane measurements in mixed-phase cloud layers of weak convective and stratus clouds

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Cloud microphysical properties including liquid and ice particle number concentration (NC), liquid water content (LWC), ice water content (IWC) and effective radius (RE) were retrieved from CloudSat data for a weakly convective and a widespread stratus cloud. Within the mixed-phase cloud layers, liquid-phase fractions needed to be assumed in the data retrieval process, and one existing linear (p 1) and two exponential (p 2 and p 3) functions, which estimate the liquid-phase fraction as a function of subfreezing temperature (from −20°C to 0°C), were tested. The retrieved NC, LWC, IWC and RE using p 1 were on average larger than airplane measurements in the same cloud layer. Function p 2 performed better than p 1 or p 3 in retrieving the NCs of cloud droplets in the convective cloud, while function p 1 performed better in the stratus cloud. Function p 3 performed better in LWC estimation in both convective and stratus clouds. The REs of cloud droplets calculated using the retrieved cloud droplet NC and LWC were closer to the values of in situ observations than those retrieved directly using the p 1 function. The retrieved NCs of ice particles in both convective and stratus clouds, on the assumption of liquid-phase fraction during the retrieval of liquid droplet NCs, were closer to those of airplane observations than on the assumption of function p 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, R., 2007: Level 2B radar-only cloud water content (2B-CWC-RO) process description document. Version: 5.1, CloudSat Project Report, A NASA Earth System Science Pathfinder Mission, 1–24. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2BCWC-ROPDICD.P R04.20071021.pdf.]

    Google Scholar 

  • Austin, R.T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the Cloud- Sat millimeter-wave radar and temperature. J. Geophys. Res., 114(D8), D00A23, doi: 10.1029/2008JD010049.

    Google Scholar 

  • Barker, H.W., A. V. Korolev, D. R. Hudak, J. W. Strapp, K. B. Strawbridge, and M. Wolde, 2008: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res., 113(D8), D00A16, doi: 10.1029/ 2008JD009971.

    Google Scholar 

  • Bouniol, D., A. Protat, A. Plana-Fattori, M. Giraud, J.-P. Vinson, and N. Grand, 2008: Comparison of airborne and spaceborne 95-GHz radar reflectivities and evaluation of multiple scattering effects in spaceborne measurements. J. Atmos. Oceanic Technol., 25(11), 1983–1995.

    Article  Google Scholar 

  • Carey, L.D., J. G. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. V. Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47(9), 2487–2495.

    Article  Google Scholar 

  • Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257–273.

    Article  Google Scholar 

  • Delanoë, J., A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy, J.-F. Gayet, and C. Jouan, 2013: Comparison of airborne in situ, airborne radar-lidar, and spaceborne radar-lidar retrievals of polar ice cloud properties sampled during the polarcat campaign. J. Atmos. Oceanic Technol., 30(1), 57–73.

    Article  Google Scholar 

  • Deng, M., G. G. Mace, Z. E. Wang, and R. P. Lawson, 2013: Evaluation of several a-train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52(4), 1014–1030.

    Article  Google Scholar 

  • Devasthale, A., and M. A. Thomas, 2012: Sensitivity of cloud liquid water content estimates to the temperature-dependent thermodynamic phase: A global study using CloudSat data. J. Climate, 25(20), 7297–7307.

    Article  Google Scholar 

  • Fleishauer, R.P., V. E. Larson, and T. H. V. Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59(11), 1779–1804.

    Article  Google Scholar 

  • Gao, W.H., C.-H. Sui, and Z. J. Hu, 2014: A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data. J. Geophys. Res., 119(6), 3268–3280.

    Google Scholar 

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28.

    Article  Google Scholar 

  • Heymsfield, A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to-86°: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol., 53(2), 479–505.

    Article  Google Scholar 

  • Hobbs, P.V., A. L. Rangno, M. Shupe, and T. Uttal, 2001: Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements. J. Geophys. Res., 106(D14), 15029–15044.

    Article  Google Scholar 

  • Hogan, R.J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128(580), 451–476.

    Article  Google Scholar 

  • Hogan, R.J., M. D. Behera, E. J. O’Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31(5), L05106, doi: 10.1029/2003GL018977.

    Google Scholar 

  • Hu, Y.X., S. Rodier, K. M. Xu, W. B. Sun, J. P. Huang, B. Lin, P. W. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115 (D4), D00H34, doi: 10.1029/2009JD012384.

    Google Scholar 

  • Korolev, A.V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Royal Meteor. Soc., 129(587), 39–65.

    Article  Google Scholar 

  • Mace, G.G., R. Marchand, Q. Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34(9), L09808, doi: 10.1029/2006GL029017.

    Google Scholar 

  • Mazin, I.P., 1995: Cloud water content in continental clouds of middle latitudes. Atmospheric Research, 35(2-4), 283–297.

    Article  Google Scholar 

  • McFarquhar, G.M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55(11), 2039–2052.

    Article  Google Scholar 

  • McFarquhar, G.M., G. Zhang, M. R. Poellot, G. L. Kok, R. Mc- Coy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed- Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi: 10.1029/2007JD008633.

    Article  Google Scholar 

  • Molthan, A.L., and W. A. Petersen, 2011: Incorporating ice crystal scattering databases in the simulation of millimeterwavelength radar reflectivity. J. Atmos. Oceanic Technol., 28(3), 337–351.

    Article  Google Scholar 

  • Nasiri, S.L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47(11), 2895–2910.

    Article  Google Scholar 

  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using groundbased and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26(9), 1717–1741.

    Article  Google Scholar 

  • Protat, A., J. Delanoë, E. J. O’Connor, and T. S. L’Ecuyer, 2010: The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27(5), 793–810.

    Article  Google Scholar 

  • Stein, T. H. M., J. Delanoë, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50(9), 1952–1969.

    Article  Google Scholar 

  • Stephens, G.L., and Coauthors, 2002: The CloudSat mission and the a-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83(12), 1771–1790.

    Article  Google Scholar 

  • Tsushima, Y., and Coauthors, 2006: Importance of the mixedphase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multimodel study. Climate Dyn., 27(2–3), 113–126.

    Article  Google Scholar 

  • Wang, L., C. C. Li, Z. G. Yao, Z. L. Zhao, Z. G. Han, and Q. Wei, 2014: Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat. Adv. Atmos. Sci., 31(4), 926–937, doi: 10.1007/s00376-013-3156-2.

    Article  Google Scholar 

  • Wood, N., 2008: Level 2B radar-visible optical depth cloud water content (2B-CWC-RVOD) process description document. Version 5.1, CloudSat Project Report, A NASA Earth System Science Pathfinder Mission, 1–26. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RVOD PDICD.P R04.20081023.pdf.]

    Google Scholar 

  • Yin, J.F., D. H. Wang, and G. Q. Zhai, 2011: Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmospheric Research, 102(1–2), 206–217.

    Article  Google Scholar 

  • You, L.G., and Y. G. Liu, 1995: Some microphysical characteristics of cloud and precipitation over China. Atmospheric Research, 35(2–4), 271–281.

    Article  Google Scholar 

  • Zhang, D.G., X. L. Guo, D. L. Gong, and Z. Y. Yao, 2011: The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteorologica Sinica, 69, 195–207. (in Chinese)

    Google Scholar 

  • Zhang, D.M., Z. E. Wang, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115 (D4), D00H13, doi: 10.1029/2009JD 012143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Choularton, T., Crosier, J. et al. Comparison of cloud properties between cloudsat retrievals and airplane measurements in mixed-phase cloud layers of weak convective and stratus clouds. Adv. Atmos. Sci. 32, 1628–1638 (2015). https://doi.org/10.1007/s00376-015-4287-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4287-4

Keywords

Navigation