Skip to main content
Log in

Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat (Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas (“footprint”) of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%–30% in terms of the influence of input parameters and the nondimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a “micro-a scale”), depending on local meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L., 1988: Atmospheric stability from scintillation measurements. Appl. Opt., 27, 2241–2246.

    Article  Google Scholar 

  • Beyrich, F., H. A. R. De Bruin, W. M. L. Meijninger, J. W. Schipper, and H. Lohse, 2002: Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Bound.-Layer Meteor., 105, 85–97.

    Article  Google Scholar 

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    Article  Google Scholar 

  • Chehbouni, A., and Coauthors, 2000: Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agricultural and Forest Meteorology, 105, 215–226.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Google Scholar 

  • Chou, M. D., and M. J. Suarez, 1994: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Tech Memo, 104606, Vol. 3, 85 pp.

    Google Scholar 

  • De Bruin, H. A. R., W. Kohsiek, and B. J. J. M. van den Hurk, 1993: A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound.-Layer Meteor., 63, 231–257.

    Article  Google Scholar 

  • De Bruin, H. A. R., B. J. J. M. van den Hurk, and W. Kohsiek, 1995: The scintillation method tested over a dry vineyard area. Bound.-Layer Meteor., 76, 25–40.

    Article  Google Scholar 

  • De Bruin, H. A. R., W. M. L. Meijninger, A. S. Smedman, and M. Magnusson, 2002: Displaced-beam small aperture scintillometer test. Part I: The WINTEX data-set. Bound.-Layer Meteor., 105, 129–148.

    Google Scholar 

  • Evans, J. G., D. D. McNeil, J. W. Finch, T. Murray, R. J. Harding, H. C. Ward, and A. Verhoef, 2012: Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agricultural and Forest Meteorology, 166–167, 221–233.

    Article  Google Scholar 

  • Foken, T., 2008: Micrometeorology. Springer, 306 pp.

    Google Scholar 

  • Foken, T., and D. Kretschmer, 1990: Stability dependence of the temperature structure parameter. Bound.-Layer Meteor., 53, 185–189.

    Article  Google Scholar 

  • Frehlich, R. G., and G. R. Ochs, 1990: Effects of saturation on the optical scintillometer. Appl. Opt., 29, 548–553.

    Article  Google Scholar 

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

    Google Scholar 

  • Geli, H. M. E., C. M. U. Neale, D. Watts, J. Osterberg, H. A. R. De Bruin, W. Kohsiek, R. T. Pack, and L. E. Hipps, 2012: Scintillometer-based estimates of sensible heat flux using lidar-derived surface roughness. Journal of Hydrometeorology, 13, 1317–1331.

    Article  Google Scholar 

  • Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 1262–1292.

    Article  Google Scholar 

  • Hartogensis, O. K., C. J. Watts, J. C. Rodriguez, and H. A. R. De Bruin, 2003: Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. Journal of Hydrometeorology, 4, 915–928.

    Article  Google Scholar 

  • Hill, R. J., S. F. Clifford, and R. S. Lawrence, 1980: Refractiveindex and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. Journal of the Optical Society of America, 70, 1192–1205.

    Article  Google Scholar 

  • Hoedjes, J. C. B., R. M. Zuurbier, and C. J. Watts, 2002: Large aperture scintillometer used over a homogeneous irrigated area, partly affected by regional advection. Bound.-Layer Meteor., 105, 99–117.

    Article  Google Scholar 

  • H¨ogstr¨om, U., 1988: Non-dimensional wind and temperatureprofiles in the atmospheric surface layer: A re-evaluation. Bound.-Layer Meteor., 42, 55–78.

    Article  Google Scholar 

  • Horst, T. W., 1999: The footprint for estimation of atmospheresurface exchange fluxes by profile techniques. Bound.-Layer Meteor., 90, 171–188.

    Article  Google Scholar 

  • Horst, T. W., and J. C. Weil, 1992: Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.- Layer Meteor., 59, 279–296.

    Article  Google Scholar 

  • Horst, T. W., and J. C. Weil, 1994: How far is far enough? The fetch requirements for micrometeorological measurement of surface fluxes. J. Atmos. Oceanic Technol., 11, 1018–1025.

    Article  Google Scholar 

  • Hsieh, C. I., G. Katul, and T. W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Resources, 23, 765–772.

    Article  Google Scholar 

  • Janji´c, Z. I., 2002: Nonsingular implementation of the Mellor- Yamada Level 2. 5 Scheme in the NCEP Meso Model. NCEP Office Note, No. 437, 61 pp.

    Google Scholar 

  • Kanda, M., R. Moriwaki, M. Roth, and T. Oke, 2002: Areaaveraged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Bound.-Layer Meteor., 105, 177–193.

    Article  Google Scholar 

  • Kang, J.-H., M.-S. Suh, and J.-H. Kwak, 2010: Land cover classification over East Asian region using recent MODIS NDVI data (2006–2008). Atmosphere, 20, 415–426. (Korean with an English abstract)

    Google Scholar 

  • Kipp & Zonen, 2012: Instruction Manual. Delft,, Netherlands, 86 pp.

    Google Scholar 

  • Kleissl, J., O. K. Hartogensis, and J. D. Gomez, 2010: Test of scintillometer saturation correction methods using field experimental data. Bound.-Layer Meteor., 137, 493–507.

    Article  Google Scholar 

  • Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503–523.

    Article  Google Scholar 

  • Kormann, R., and F. X. Meixner, 2001: An analytical footprint model for non-neutral stratification. Bound.-Layer Meteor., 99, 207–224.

    Article  Google Scholar 

  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.

    Article  Google Scholar 

  • Lagouarde, J. P., M. Irvine, J. M. Bonnefond, C. S. B. Grimmond, N. Long, T. R. Oke, J. A. Salmond, and B. Offerle, 2006: Monitoring the sensible heat flux over urban areas using large aperture scintillometry: Case study of Marseille city during the ESCOMPTE experiment. Bound.-Layer Meteor., 118, 449–476.

    Article  Google Scholar 

  • Lee, S.-H., 2011: Further development of the vegetated urban canopy model including a grass-covered surface parametrization and photosynthesis effects. Bound.-Layer Meteor., 140, 315–342.

    Article  Google Scholar 

  • Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.- Layer Meteor., 126, 73–102.

    Article  Google Scholar 

  • Lee, S.-H., and J.-J. Baik, 2011: Evaluation of the vegetated urban canopy model (VUCM) and its impacts on urban boundary layer simulation. Asia-Pacific Journal of Atmospheric Sciences, 47(2), 151–165.

    Article  Google Scholar 

  • Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127–2143.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Liu, S. M., Z. W. Xu, W. Z. Wang, Z. Z. Jia, M. J. Zhu, and J. M. Wang, 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15, 1291–1306.

    Article  Google Scholar 

  • Liu, S. M., Z. W. Xu, Z. L. Zhu, Z. Z. Jia, and M. J. Zhu, 2013: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol., 487, 24–38.

    Article  Google Scholar 

  • Loridan, T., F. Lindberg, O. Jorba, S. Kotthaus, S. Grossman-Clarke, and C. S. B. Grimmond, 2013: High resolution simulation of the variability of surface energy balance fluxes across central London with urban zones for energy partitioning. Bound.-Layer Meteor., 147, 493–523.

    Article  Google Scholar 

  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261–304.

    Article  Google Scholar 

  • Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857–1864.

    Article  Google Scholar 

  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357–397.

    Article  Google Scholar 

  • McAneney, K. J., A. E. Green, and M. S. Astill, 1995: Largeaperture scintillometry: The homogeneous case. Agricultural and Forest Meteorology, 76, 149–162.

    Article  Google Scholar 

  • Meijninger, W. M. L., and H. A. R. De Bruin, 2000: The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer. J. Hydrol., 229, 42–49.

    Article  Google Scholar 

  • Meijninger, W. M. L., A. E. Green, O. K. Hartogensis, W. Kohsiek, J. C. B. Hoedjes, R. M. Zuurbier, and H. A. R. De Bruin, 2002: Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface-Flevoland field experiment. Bound.- Layer Meteor., 105, 63–83.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–682.

    Google Scholar 

  • Moene, A. F., 2003: Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Bound.-Layer Meteor., 107, 635–653.

    Article  Google Scholar 

  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, and W. Pawlak, 2006: Intraurban differences of surface energy fluxes in a central European city. J. Appl. Meteor. Climatol., 45, 125–136.

    Article  Google Scholar 

  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 1038–1060.

    Google Scholar 

  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley and Sons, New York, 397 pp.

    Google Scholar 

  • Pasquill, F., 1974: Atmospheric Diffusion. 2nd ed., John Wiley & Sons, New York, 425 pp.

    Google Scholar 

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.

    Article  Google Scholar 

  • Pauscher, L., 2010: Scintillometer measurements above the urban area of London. Diploma thesis, Dept. of Micrometeorology,University of Bayreuth, 95 pp.

    Google Scholar 

  • Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Quart. J. Roy. Meteor. Soc., 136, 1514–1529.

    Google Scholar 

  • Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.-Layer Meteor., 71, 211–216.

    Article  Google Scholar 

  • Roth, M. W., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941–990.

    Article  Google Scholar 

  • Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773–1794.

    Article  Google Scholar 

  • Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293–318.

    Article  Google Scholar 

  • Schuepp, P. H., M. Y. Leclerc, J. I. Macpherson, and R. L. Desjardins, 1990: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Layer Meteor., 50, 355–373.

    Article  Google Scholar 

  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 pp.

    Google Scholar 

  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

    Google Scholar 

  • Thiermann, V., and H. Grassl, 1992: The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58, 367–389.

    Article  Google Scholar 

  • Timmermans, W. J., Z. Su, and A. Olioso, 2009: Footprint issues in scintillometry over heterogeneous landscapes. Hydrol. Earth Syst. Sci., 13(11), 2179–2190.

    Article  Google Scholar 

  • van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ., 12, 2125–2129.

    Article  Google Scholar 

  • Wang, T. I., G. R. Ochs, and S. F. Clifford, 1978: A saturationresistant optical scintillometer to measure C2 n. Journal of the Optical Society of America, 69, 334–338.

    Article  Google Scholar 

  • Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2014: Multiscale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance. Bound.- Layer Meteor., 152, 65–89.

    Article  Google Scholar 

  • Wesely, M. L., 1976: The combined effect of temperature and humidity fluctuations on refractive index. J. Appl. Meteor., 15, 43–49.

    Article  Google Scholar 

  • Wilson, K. M., A. van Tol, and J. Mes, 2013: The upgraded Kipp & Zonen LAS MkII large aperture scintillometer instrument specifications. Tubingen Atmospheric Physics Symposium “Scintillometers and Applications”, 7–9 Oct 2013, Tubingen, Germany.

    Google Scholar 

  • Wyngaard, J. C., Y. Izumi, and S. A. Collins Jr., 1971: Behavior of the refractive-index-structure parameter near the ground. Journal of the Optical Society of America, 61, 1646–1650.

    Article  Google Scholar 

  • Xu, Z. W., and Coauthors, 2013: Intercomparison of surface energy flux measurement systems used during the HiWATERMUSOEXE. J. Geophys. Res., 118, 13 140–157.

    Google Scholar 

  • Zeweldi, D. A., M. Gebremichael, J. M. Wang, T. Sammis, J. Kleissl, and D. Miller, 2010: Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: Field experiment over a homogeneous semi-arid region. Bound.-Layer Meteor., 135, 151–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Lee, JH. & Kim, BY. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer. Adv. Atmos. Sci. 32, 1092–1105 (2015). https://doi.org/10.1007/s00376-015-4236-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4236-2

Key words

Navigation