Skip to main content
Log in

An ocean data assimilation system in the Indian Ocean and west Pacific Ocean

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean (hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving, hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles (mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity–temperature–depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993–2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, H. T., 2000: Indonesian Throughflow in a coupled climate model and the sensitivity of the heat budget and deep overturning. J. Geophys. Res., 105(C11), 26135–26150.

    Article  Google Scholar 

  • Bentsen, M., G. Evensen, H. Drange, and A. D. Jenkins, 1999: Coordinate transform on a sphere using conformal mapping. Mon. Wea. Rev., 127, 2733–2740.

    Article  Google Scholar 

  • Bertino, L., and K. A. Lisæter, 2008: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, J. Operat. Oceanogr., 2, 15–18.

    Google Scholar 

  • Bleck, R., C. Rooth, D. M. Hu, and L. T. Smith, 1992: Salinitydriven thermocline transients in a wind-and thermohalineforced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1505.

    Article  Google Scholar 

  • Carton, J. A., G. Chepurin, and X. H. Cao, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30(2), 311–326.

    Google Scholar 

  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3583–3604.

    Article  Google Scholar 

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/ Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19477–19498.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.

    Article  Google Scholar 

  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669.

    Article  Google Scholar 

  • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367.

    Article  Google Scholar 

  • Fu, W. W., J. Zhu, and C. X. Yan, 2009a: A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation. Ocean Modelling, 26(3–4), 206–216.

    Article  Google Scholar 

  • Fu, W. W., J. Zhu, C. X. Yan, and H. L. Liu, 2009b: Toward a global ocean data assimilation system based on ensemble optimum interpolation: Altimetry data assimilation experiment. Ocean Dynamics, 59, 587–602, doi: 10.1007/s10236-009-0206-5.

    Article  Google Scholar 

  • Fujii, Y., and M. Kamachi, 2003: Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes. J. Geophys. Res., 108(C9), 3297, doi: 10.1029/2002JC001745.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.

    Article  Google Scholar 

  • Godfrey, J. S., and A. J. Weaver, 1991: Is the Leeuwin Current driven by Pacific heating and winds? Progress in Oceanography, 27, 225–272.

    Article  Google Scholar 

  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037–5046.

    Article  Google Scholar 

  • Gordon, A. L., and Coauthors, 2009: The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50(2), 115–128.

    Article  Google Scholar 

  • Han, G. J., and Coauthors, 2011: A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv. Atmos. Sci., 28(3), 682–690, doi: 10.1007/s00376-010-9184-2.

    Article  Google Scholar 

  • Han, G. J., H. L. Fu, X. F. Zhang, W. Li, X. R. Wu, X. D. Wang, and L. X. Zhang, 2013: A global ocean reanalysis product in the China Ocean Reanalysis (CORA) project. Adv. Atmos. Sci., 30(6), 1621–1631, doi: 10.1007/s00376-013-2198-9.

    Article  Google Scholar 

  • Hirst, A. C., and J. S. Godfrey, 1993: The role of the Indonesian throughflow in a global ocean GCM. J. Phys. Oceanogr., 23, 1057–1086.

    Article  Google Scholar 

  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 4188–4207, doi: 10.1175/2009MWR2849.1.

    Article  Google Scholar 

  • Lee, T., I. Fukumori, D. Menemenlis, Z. F. Xing, and L.-L. Fu, 2002: Effects of the Indonesian throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr., 32(5), 1404–1429.

    Article  Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–127.

    Article  Google Scholar 

  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15, 522–534.

    Article  Google Scholar 

  • Li, X. C., J. Zhu, Y. G. Xiao, and R. W. Wang, 2010: A modelbased observation-thinning scheme for the assimilation of high-resolution SST in the shelf and coastal seas around China. Journal of Atmospheric and Oceanic Technology, 27, 1044–1058.

    Article  Google Scholar 

  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.- F. Pun, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133(9), 2635–2649.

    Article  Google Scholar 

  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi: 10.1029/2008GL035815.

    Google Scholar 

  • Martin, M. J., A. Hines, and M. J. Bell, 2007: Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quart. J. Roy. Meteor. Soc., 133, 981–995.

    Article  Google Scholar 

  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean-global atmosphere observing system: A decade of progress. J. Geophys. Res., 103(C7), 14169–14240.

    Article  Google Scholar 

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The research moored array for African-Asian-Australian monsoon analysis and prediction. Bull. Amer. Meteor. Soc., 90, 459–480.

    Article  Google Scholar 

  • Oke, P. R., G. B. Brassington, D. A. Griffin, and A. Schiller, 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modelling, 21, 46–70, doi: 10.1016/j.ocemod.2007.11.002.

    Article  Google Scholar 

  • Pandey, V. K., V. Bhatt, A. C. Pandey, and I. M. L. Das, 2007: Impact of Indonesian throughflow blockage on the southern Indian ocean. Current Science, 93, 399–406.

    Google Scholar 

  • Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolutionblended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

    Article  Google Scholar 

  • Salonen, K., H. Jarvinen, G. Haase, S. Niemela, and R. Eresmaa, 2009: Doppler radar radial winds in HIRLAM. Part II: Optimizing the super-observation processing. Tellus A, 61, 288–295.

    Article  Google Scholar 

  • Schneider, N., 1998: The Indonesian throughflow and the global climate system. J. Climate, 11, 676–689.

    Article  Google Scholar 

  • Schneider, N., and T. P. Barnett, 1997: Indonesian throughflow in a coupled general circulation model. J. Geophys. Res., 102, 12341–12358.

    Article  Google Scholar 

  • Seko, H., T. Kawabata, T. Tsuyuki, H. Nakamura, K. Koizumi, and T. Iwabuchi, 2004: Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteor. Soc. Japan, 82, 473–489.

    Article  Google Scholar 

  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.

    Article  Google Scholar 

  • Teague, W. J., M. J. Carron, and P. J. Hogan, 1990: A comparison between the generalized digital environmental model and Levitus climatologies. J. Geophys. Res., 95, 7167–7183.

    Article  Google Scholar 

  • Wajsowicz, R., 2002: Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow. Climate Dyn., 18, 437–453.

    Article  Google Scholar 

  • Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian throughflow’s effect on global climate determined from the COLA coupled climate system. J. Climate, 14, 3029–3042.

    Article  Google Scholar 

  • Wajsowicz, R. C., and P. S. Schopf, 2001: Oceanic influences on the seasonal cycle in evaporation rate over the Indian Ocean. J. Climate, 14, 1199–1226.

    Article  Google Scholar 

  • Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi: 10.1029/2005GL023716.

    Google Scholar 

  • Walker, N. D., and Coauthors, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett., 41(21), 7595–7601, doi: 10.1002/2014GL061584.

    Article  Google Scholar 

  • Wang, D. X., Y. H. Qin, X. J. Xiao, Z. Q. Zhang, and F. M. Wu, 2012: Preliminary results of a new global ocean reanalysis. Chinese Science Bulletin, 57(26), 3509–3517, doi: 10.1007/s11434-012-5232-x.

    Article  Google Scholar 

  • Wang, L., and T.-J. Zhou, 2012: Assessing the quality of regional ocean reanalysis data from ENSO signals. Atmos. Oceanic Sci. Lett., 5, 55–61.

    Article  Google Scholar 

  • Wijffels, S. E., J. Willis, C. M. Domingues, P. Barker, N. J. White, A. Gronell, K. Ridgway, and J. A. Church, 2008: Changing expendable bathythermograph fall rates and their impact on estimates of Thermosteric sea levelrise. J. Climate, 21, 5657–5672, doi: 10.1175/2008JCLI2290.1

    Article  Google Scholar 

  • Willis, J. K., J. M. Lyman, G. C. Johnson, et al., 2009: In situ data biases and recent ocean heat content variability. J. Atmos. Oceanic Technol., 26(4), 846–852.

    Article  Google Scholar 

  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.

    Article  Google Scholar 

  • Xiao, X. J., D. X. Wang, C. X. Yan, and J. Zhu, 2008: Evaluation of a 3dVAR system for the South China Sea. Progress in Natural Science, 18, 547–554.

    Article  Google Scholar 

  • Xie, J. P., and J. Zhu, 2010: Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Modelling, 33, 283–298.

    Article  Google Scholar 

  • Yan, C.-X., and J. Zhu, 2010: The impact of “bad” Argo profiles on an ocean data assimilation. Atmos. Oceanic Sci. Lett., 3(2), 59–63.

    Article  Google Scholar 

  • Zheng, Z.-W., C.-R. Ho, and N.-J. Kuo, 2008: Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophys. Res. Lett., 35, L20603, doi: 10.1029/2008GL035524.

    Article  Google Scholar 

  • Zheng, Z.-W., C.-R. Ho, Q. N. Zheng, Y.-T. Lo, N.-J. Kuo, and G. Gopalakrishnan, 2010: Effects of preexisting cyclonic eddies on upper ocean response to Category 5 typhoons in the western North Pacific. J. Geophys. Res., 115, C09013, doi: 10.1029/2009JC005562.

    Google Scholar 

  • Zu, T. T., D. X. Wang, C. X. Yan, I. Belkin, W. Zhuang, and J. Chen, 2013: Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63, 519–531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxiang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Zhu, J. & Xie, J. An ocean data assimilation system in the Indian Ocean and west Pacific Ocean. Adv. Atmos. Sci. 32, 1460–1472 (2015). https://doi.org/10.1007/s00376-015-4121-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4121-z

Keywords

Navigation