Skip to main content
Log in

The hiatus and accelerated warming decades in CMIP5 simulations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Observed hiatus or accelerated warming phenomena are compared with numerical simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives, and the associated physical mechanisms are explored based on the CMIP5 models. Decadal trends in total ocean heat content (OHC) are strongly constrained by net top-of-atmosphere (TOA) radiation. During hiatus decades, most CMIP5 models exhibit a significant decrease in the SST and upper OHC and a significant increase of heat penetrating into the subsurface or deep ocean, opposite to the accelerated warming decades. The shallow meridional overturning of the Pacific subtropical cell experiences a significant strengthening (slowdown) for the hiatus (accelerated warming) decades associated with the strengthened (weakened) trade winds over the tropical Pacific. Both surface heating and ocean dynamics contribute to the decadal changes in SST over the Indian Ocean, and the Indonesian Throughflow has a close relationship with the changes of subsurface temperature in the Indian Ocean. The Atlantic Meridional Overturing Circulation (Antarctic Bottom Water) tends to weaken (strengthen) during hiatus decades, opposite to the accelerated warming decades. In short, the results highlight the important roles of air-sea interactions and ocean circulations for modulation of surface and subsurface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, V. K., and Coauthers, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    Article  Google Scholar 

  • Bao, Q., and Coanthers, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALSs2. Advances in Atmospheric Sciences, 30, 561–576.

    Article  Google Scholar 

  • Brix, H., and R. Gerdes, 2003: North Atlantic deep water and Antarctic bottom water: Their interaction and influence on the variability of the global ocean circulation. J. Geophys. Res., 108(C2), 1–18, doi:10.1029/2002JC001335.

    Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    Article  Google Scholar 

  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 1224–1235.

    Article  Google Scholar 

  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 17, 61–81, doi:10.1007/s003820000094.

    Article  Google Scholar 

  • Collins, W. J. and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051–1075.

    Article  Google Scholar 

  • Dai, A. G., 2012: The influence of the Inter-decadal Pacific Oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633–646.

    Article  Google Scholar 

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multi-decadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    Article  Google Scholar 

  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13(9), 1481–1495.

    Article  Google Scholar 

  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24(13): 3484–3519.

    Article  Google Scholar 

  • Dufresne, J. L., and Coauthors, 2012: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165, doi: 10.1007/s00382-012-1636-1.

    Article  Google Scholar 

  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19).

    Google Scholar 

  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling?. Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    Article  Google Scholar 

  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14(5), 676–691.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991. doi: 10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 3325–3328.

    Article  Google Scholar 

  • Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106(D20), 23947–23963.

    Article  Google Scholar 

  • Held, I. M., 2013: Climate science: The cause of the pause. Nature, 501, 318–319.

    Article  Google Scholar 

  • Ilyina, T., and Coauthors, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2), 287–315.

    Google Scholar 

  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287–299.

    Article  Google Scholar 

  • Jones, C. D. and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543–570, doi:10.5194/gmd-4-543-2011.

    Article  Google Scholar 

  • Katsman, C. A., and G. J. van Oldenborgh, 2011: Tracing the upper ocean’s “missing heat”. Geophys. Res. Lett., 38, L14610, doi:10.1029/2011GL048417.

    Google Scholar 

  • Kaufmann, R. K., H. Kauppib, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108(29), 11790–11793.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Klinger, B. A., J. P. McCreary, and R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32, 1507–1521.

    Article  Google Scholar 

  • Knight, J., and Coauthors, 2009: Do global temperature trends over the last decade falsify climate predictions?. Bull. Amer. Meteor. Soc., 90, S20–S21.

    Google Scholar 

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708. doi: 10.1029/2005GL024233.

    Article  Google Scholar 

  • Knox, R. S., and D. H. Douglass, 2010: Recent energy balance of earth. International Journal of Geosciences, 1(3), 99–101, doi:10.4236/ijg.2010.13013.

    Article  Google Scholar 

  • Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403–407.

    Article  Google Scholar 

  • Kouketsu, S., T. Doi, T. Kawano, and S. Masuda, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi:10.1029/2010JC006464.

    Google Scholar 

  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, and U. Schweckendiek, 2006: Is the thermohaline circulation changing?. J. Climate, 19(18), 4631–4637.

    Article  Google Scholar 

  • Lau, N. C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78(1), 21–33.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North pacific and North Atlantic: Seasonal dependence and role of extratropical sea-air coupling. J. Climate, 14(13), 2846–2866.

    Article  Google Scholar 

  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35(1), L01605, doi:10.1029/2007GL032419.

    Article  Google Scholar 

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    Google Scholar 

  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    Article  Google Scholar 

  • Liu, J. L., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.

    Google Scholar 

  • Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334–337, doi: 10.1038/nature09043.

    Article  Google Scholar 

  • McPhaden, M. J., and D. X. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603–608.

    Article  Google Scholar 

  • McPhaden, M. J., and D. X. Zhang, 2004: Pacific ocean circulation rebounds. Geophys. Res. Lett., 31, L18301, doi:10.1029/2004GL020727.

    Article  Google Scholar 

  • Meehl, G. A., J. M. Arblaster, J. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nature Climate Change, 1, 360–364, doi: 10.1038/NCLIMATE1229.

    Article  Google Scholar 

  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Climate, 26, 7298–7310, doi: 10.1175/JCLI-D-12-00548.1.

    Article  Google Scholar 

  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101(C5), 12255–12263, doi: 10.1029/95JC03729.

    Article  Google Scholar 

  • Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850–2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems.

    Google Scholar 

  • Nigam, S., and H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans. Part I: COADS observations. J. Climate, 6, 657–676.

    Article  Google Scholar 

  • Nonaka, M., S. P. Xie, and J. P. McCreay, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29(7), 1116, doi:10.1029/2001GL013717.

    Article  Google Scholar 

  • Otterå, O. H., M. Bentsen, H. Drange, and L. L. Sou, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3(10), 688–694.

    Article  Google Scholar 

  • Palmer, M. D., D. J. McNeall, and N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38(13), L13707, doi:10.1029/2011GL047835.

    Article  Google Scholar 

  • Potemra, J. T., S. L. Hautala, and J. Sprintall, 2003: Vertical structure of Indonesian throughflow in a large-scale model. Deep-Sea Res. II, 50, 2143–2162.

    Article  Google Scholar 

  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, doi:10.1175/2010JCLI3682.1.

    Article  Google Scholar 

  • Rotstayn, L. D., and Coauthors, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology, 30, 1067–1088, doi:10.1002/joc.1952.

    Google Scholar 

  • Schott, F. A., S. P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2005: A global merged landair-sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 2021–2036.

    Article  Google Scholar 

  • Solomon, A., J. P. McCreary, R. Kleeman, and B. A. Klinger, 2003: Interannual and decadal variability in an intermediate coupled model of the Pacific region. J. Climate, 16, 383–405.

    Article  Google Scholar 

  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223, doi:10.1126/science.1182488.

    Article  Google Scholar 

  • Swingedouw, D., T. Fichefet, H. Goosse, and M. F. Loutre, 2009: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33(2–3), 365–381.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Tjiputra, J. F., and Coauthers, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301–325, doi:10.5194/gmd-6-301-2013.

    Article  Google Scholar 

  • Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth’s global energy. Current Opinion in Environmental Sustainability, 1(1), 19–27.

    Article  Google Scholar 

  • Trenberth, K. E., and J. T. Fasullo, 2010: Tracking Earth’s energy. Science, 328(5976), 316–317.

    Article  Google Scholar 

  • Trenberth, K. E., and J. T. Fasullo, 2011: Tracking earth’s energy: From El Niño to global warming. Surv. Geophys., 33, 413–426, doi: 10.1007/s10712-011-9150-2.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323.

    Article  Google Scholar 

  • Tung, K. K., and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110(6), 2058–2063.

    Article  Google Scholar 

  • Vranes, K., A. L. Gordon, and A. Ffield, 2002: The heat transport of the Indonesian throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res. II, 49, 1391–1410.

    Article  Google Scholar 

  • Voldoire, A., and Coauthors, 2011: The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 1–31.

    Google Scholar 

  • Wang, T., O. H. Otterå, Y. Gao, and H. Wang, 2012: The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Climate Dyn., 39(12), 2917–2936, doi: 10.1007/s00382-012-1373-5.

    Article  Google Scholar 

  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: model description and basic results of CMIP 5-20c3m experiments. Geoscientific Model Development, 4(4), 845–872.

    Article  Google Scholar 

  • Wu, T.W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Article  Google Scholar 

  • Xie, S. P., H. Annamalai, F. Schott, and J. P. McCreary, 2002: Origin and predictability of South Indian Ocean climate variability. J. Climate, 15, 864–874.

    Article  Google Scholar 

  • Yang, H., Y. Wang, and Z. Liu, 2013: A modelling study of the Bjerknes compensation in the meridional heat transport in a freshening ocean. Tellus A., 65, 18480, doi: 10.3402/tellusa.v65i0.18480.

    Google Scholar 

  • Yu, Y. Q., and Y. Song, 2013: The modulation of ocean circulation to the global warming trend: Numerical simulation by FGOALS-s2. Chinese J. Atmos. Sci., 37(2), 395–410, doi:10.3878/j.issn.1006-9895.2012.12306. (in Chinese)

    Google Scholar 

  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J. Meteor. Soc. Japan, 90, 23–64.

    Article  Google Scholar 

  • Zanchettin, D., C. Timmreck, H. F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39(1–2), 419–444.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi: 10.1029/2006GL026267.

    Article  Google Scholar 

  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Yu, Y. & Lin, P. The hiatus and accelerated warming decades in CMIP5 simulations. Adv. Atmos. Sci. 31, 1316–1330 (2014). https://doi.org/10.1007/s00376-014-3265-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3265-6

Key words

Navigation