Skip to main content

Advertisement

Log in

Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Biochar affects soil carbon (C) dynamics via shifting microbial community, but the active bacteria that regulate the rhizosphere-based C cycling remain to be identified. Here, a continuous 13CO2 labeling pot (Zea mays L.) experiment over 14 days, combined with RNA-based stable isotope probing (RNA-SIP), were used to characterize the active bacterial communities involved in the mineralization of rhizodeposits and soil organic C (SOC) in biochar-amended soil. Compared with the non-amended soil, biochar shifted the rhizosphere communities towards having lower richness and evenness, and particularly stimulated the growth of Actinobacteria (e.g., genus affiliated to Micrococcaceae) and other oligotrophs, most likely due to neutralizing soil acidity (from 4.53 to 6.17) and increasing content of recalcitrant organic C (from 10.69 to 25.77 g·kg−1). These enriched genera were associated with mineralization of both rhizodeposits and SOC, giving 35.09% and 87.28% increased mineralization of rhizodeposits and SOC. This led to much less (by 58.50% decrease) incorporation of 13C into biochar-amended soil. This study deciphered the active microorganisms in the biochar-soil–plant system that likely increased SOC and rhizodeposit mineralization (fewer rhizodeposits remaining), and thus diminished C sequestration by biochar per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SOC:

Soil organic carbon

LOC:

Labile organic carbon

IOC:

Intermediate organic carbon

ROC:

Recalcitrant organic carbon

RNA-SIP:

RNA-based stable isotope probing

References

  • Allal I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, Koci M, Ballou A, Mendoza M, Ali R, Azcarate-Peril MA (2017) A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol 17:194

    Article  CAS  Google Scholar 

  • Asiloglu R, Sevilir B, Samuel SO, Aycan M, Akca MO, Suzuki K, Murase J, Turgay OC, Harada N (2021) Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil. Biol Fertil Soils 57:293–304

    Article  CAS  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  CAS  Google Scholar 

  • Bao Y, Dolfing J, Guo Z, Chen R, Wu M, Li Z, Lin X, Feng Y (2021) Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition especially in less fertile soils. Microbiome 9:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci 105:10583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81:687–711

    Article  CAS  Google Scholar 

  • Bolan N, Hoang S, Beiyuan J, Gupta S, Hou D, Karakoti A, Joseph S, Jung S, Kim KH, Kirkham M, Kua H, Kumar M, Kwon E, Ok Y, Perera V, Rinklebe J, Shaheen S, Sarkar B, Sarmah A, Van Zwieten L (2021) Multifunctional applications of biochar beyond carbon storage. Int Mater Rev 67:150–200

    Article  CAS  Google Scholar 

  • Calvo OC, Franzaring J, Schmid I, Müller M, Brohon N, Fangmeier A (2017) Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Global Change Biol 23:1292–1304

    Article  Google Scholar 

  • Campos P, Miller AZ, Prats SA, Knicker H, Hagemann N, De la Rosa JM (2020) Biochar amendment increases bacterial diversity and vegetation cover in trace element-polluted soils: a long-term field experiment. Soil Biol Biochem 150:108014

    Article  CAS  Google Scholar 

  • Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Peña A, Goodrich J, Gordon J, Huttley G, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, McDonald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso J, Bittinger K, Bushman F, DeSantis T, Andersen G, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics (oxford England) 26:266–267

    Article  CAS  Google Scholar 

  • Chen L, Brookes P, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    Article  CAS  Google Scholar 

  • Chen L, Jiang Y, Liang C, Luo Y, Xu Q, Han C, Zhao Q, Sun B (2019) Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Kumar A, Fu Y, Singh B, Ge T, Tu H, Luo Y, Xu J (2021) Biochar decreased rhizodeposits stabilization via opposite effects on bacteria and fungi: diminished fungi-promoted aggregation and enhanced bacterial mineralization. Biol Fertil Soils 57:533–546

    Article  CAS  Google Scholar 

  • Cobo-Díaz J, Fernández-González A, Villadas P, Robles A, Toro N, Fernández-López M (2015) Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after a wildfire. Microb Ecol 69:895–904

    Article  PubMed  Google Scholar 

  • Cotrufo M, Wallenstein M, Boot C, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol 19:988–995

    Article  Google Scholar 

  • Couradeau E, Sasse J, Goudeau D, Nath N, Hazen T, Bowen B, Chakraborty R, Malmstrom R, Northen T (2019) Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun 10:2770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai Z, Wang Y, Muhammad N, Yu X, Xiao K, Meng J, Liu X, Xu J, Brookes PC (2014) The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH. Soil Sci Soc Am J 78:1606–1614

    Article  CAS  Google Scholar 

  • Dai Z, Barberan A, Li Y, Brookes PC, Xu J (2017) Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. MSphere 2:e00085-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Xiong X, Zhu H, Xu H, Leng P, Li J, Tang C, Xu J (2021) Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes. Biochar 3:239–254

    Article  CAS  Google Scholar 

  • Ding Z, Li M, Zhao J, Ren J, Huang R, Xie M, Cui X, Zhu H, Wen M (2010) Naphthospironone A: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chemistry 16:3902–3905

    Article  CAS  PubMed  Google Scholar 

  • Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG (2015) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. The ISME J 9:721–734

    Article  CAS  PubMed  Google Scholar 

  • Dixon P (2003) VEGAN a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts HK, Kielak AM, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. PNAS 107:10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan M, Wu F, Jia Z, Wang S, Cai Y, Chang SX (2020) Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil. Biol Fertil Soils 56:1023–1036

    Article  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing — linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Dumont MG, Pommerenke B, Casper P, Conrad R (2011) DNA- rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and Clustering Orders of Magnitude Faster than BLAST Bioinformatics (oxford England) 26:2460–2461

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (oxford England) 27:2194–2200

    Article  CAS  Google Scholar 

  • Efthymiou A, Grønlund M, Müller-Stöver DS, Jakobsen I (2018) Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biol Biochem 116:139–147

    Article  CAS  Google Scholar 

  • Entcheva-Dimitrov P, Spormann AM (2004) Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J Bacteriol 186:8254–8266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011) Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia 54:187–193

    Article  CAS  Google Scholar 

  • Fabbri D, Adamiano A, Torri C (2010) GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass. Anal Bioanal Chem 397:309–317

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Fu Y, Kumar A, Chen L, Jiang Y, Ling N, Wang R, Pan Q, Singh BP, Redmile-Gordon M, Luan L, Li Q, Shi Q, Reid BJ, Fang Y, Kuzyakov Y, Luo Y, Xu J (2021) Rhizosphere microbiome modulated effects of biochar on ryegrass 15N uptake and rhizodeposited 13C allocation in soil. Plant Soil 463:359–377

    Article  CAS  Google Scholar 

  • Gao Y, Wu YH, Xu L, Cheng H, Wang CS, Xu XW (2019) Complete genome sequence of Qipengyuania sediminis CGMCC 112928T shed light on its role in matter-cycle and cold adaption mechanism of the genus Qipengyuania. Curr Microbiol 76:988–994

    Article  CAS  PubMed  Google Scholar 

  • Gohain A, Manpoong C, Saikia R, De Mandal S (2020) Actinobacteria: diversity and biotechnological applications. In: De Mandal S, Bhatt P (eds) Recent advancements in microbial diversity. Press, London, pp 217–231

    Chapter  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • He J, Roemer E, Lange C, Huang X, Maier A, Kelter G, Jiang J, Xu LH, Menzel KD, Grabley S (2007) Structure derivatization and antitumor activity of new griseusins from Nocardiopsis sp. J Med Chem 50:5168–5175

    Article  CAS  PubMed  Google Scholar 

  • Hernández M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YS, Shen FT (2016) Bioprospecting of facultatively oligotrophic bacteria from non-rhizospheric soils. Appl Soil Ecol 108:315–324

    Article  Google Scholar 

  • Jaafar NM, Clode PL, Abbott LK (2015) Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere 25:770–780. https://doi.org/10.1016/S1002-0160(15)30058-8

    Article  Google Scholar 

  • Jeewani P, Gunina A, Tao L, Zhu Z, Kuzyakov Y, Van Zwieten L, Guggenberger G, Shen C, Yu G, Singh BP, Pan S, Luo Y, Xu JM (2020) Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biol Biochem 147:107840

    Article  CAS  Google Scholar 

  • Jenkins JR, Viger M, Arnold C, Harris ZM, Ventura M, Miglietta F, Girardin C, Edwards RJ, Rumpel C, Fornasier F, Zavalloni C, Tonon G, Alberti G, Taylor G (2017) Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. Glob Change Biol Bioen 9:591–612

    Article  CAS  Google Scholar 

  • Johnson-Rollings AS, Wright H, Masciandaro G, Wright H, Masciandaro G, Macci C, Doni S, Calvo-BaDo LA, Susan ES, Carlos VP, Elizabeth MHW (2014) Exploring the functional soil-microbe interface and exoenzymes through soil metaexoproteomics. The ISME J 8:2148–2150

    Article  CAS  PubMed  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME J 3:442–453

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Cowie AL, Van Zwieten L, Bolan N, Budai A, Buss W, Cayuela ML, Graber ER, Ippolito JA, Kuzyakov Y, Luo Y, Ok YS, Palansooriya KN, Shepherd J, Stephens S, Weng Z, Lehmann J (2021) How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13:1731–1764

    Article  CAS  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    Article  CAS  Google Scholar 

  • Khessairi A, Fhoula I, Jaouani A, Turki Y, Cherif A, Boudabous A, Hassen A, Ouzari H (2014) Pentachlorophenol degradation by Janibacter sp, a new actinobacterium isolated from saline sediment of arid land. Biomed Res Int 4:296472

    Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kolton M, Graber ER, Tsehansky L, Elad Y, Cytryn E (2017) Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol 213:1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate–carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig M, Thies J, Masiello C, Hockaday W, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li Y, Li Y, Chang SX, Yang Y, Fu S, Jiang P, Luo Y, Yang M, Chen Z, Hu S, Zhao M, Liang X, Xu Q, Zhou G, Zhou J (2018) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185

    Article  CAS  Google Scholar 

  • Li H, Su JQ, Yang XR, Zhou GW, Lassen SB, Zhu YG (2019) RNA stable isotope probing of potential Feammox population in paddy soil. Environ Sci Technol 53:4841–4849

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Liang C, Schimel JP, Jastrow D (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Yaying L, Yao H (2019) Biochar amendment stimulates utilization of plant-derived carbon by soil bacteria in an intercropping system. Front Microbiol 10:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao H, Zheng C, Long J, Guzmán I (2021) Effects of biochar amendment on tomato rhizosphere bacterial communities and their utilization of plant-derived carbon in a calcareous soil. Geoderma 396:115082

    Article  CAS  Google Scholar 

  • Ling L, Fu Y, Jeewani P, Tang C, Pan S, Reid B, Gunina A, Li Y, Li Y, Cai Y, Kuzyakov Y, Li Y, Su WQ, Singh BP, Luo Y, Xu JM (2021) Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils. Soil Biol Biochem 160:108311

    Article  CAS  Google Scholar 

  • Liu P, Pommerenke B, Conrad R (2018) Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ Microbiol 20:337–354

    Article  CAS  PubMed  Google Scholar 

  • Liu YR, Delgado-Baquerizo M, Yang Z, Feng J, Zhu J, Huang Q (2020) Microbial taxonomic and functional attributes consistently predict soil CO2 emissions across contrasting croplands. Sci Total Environ 702:134885

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Dijkstra FA, Wang P, Cheng W (2019) Roots of non-woody perennials accelerated long-term soil organic matter decomposition through biological and physical mechanisms. Soil Biol Biochem 134:42–53

    Article  CAS  Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isoBiocharnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Durenkamp M, Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Devonshire BJ, Brookes PC (2013) Microbial biomass growth following incorporation of biochars produced at 350 °C or 700 °C in a silty-clay loam soil of high and low pH. Soil Biol Biochem 57:513–523

    Article  CAS  Google Scholar 

  • Luo Y, Yu Z, Zhang K, Xu J, Brookes P (2016) The properties and functions of biochars in forest ecosystems. J Soils Sediments 16:8

    Article  CAS  Google Scholar 

  • Luo Y, Zang H, Yu Z, Chen Z, Gunina A, Kuzyakov Y, Xu J, Zhang K, Brookes PC (2017) Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol Biochem 106:28–35

    Article  CAS  Google Scholar 

  • Luo Y, Dungait JAJ, Zhao X, Brookes PC, Durenkamp M, Li G, Lin Q (2018) Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degrad Dev 29:2183–2188

    Article  Google Scholar 

  • Luo Y, Lin Q, Durenkamp M, Kuzyakov Y (2018) Does repeated biochar incorporation induce further soil priming effect? J Soils Sed 18:128–135

    Article  CAS  Google Scholar 

  • Luo Y, Xiao M, Yuan H, Liang C, Zhu Z, Xu J, Kuzyakov Y, Wu J, Ge T, Tang C (2021) Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biol Biochem 160:108345

    Article  CAS  Google Scholar 

  • Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD (2020) Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME J 14:1–9

    Article  CAS  PubMed  Google Scholar 

  • Mallory LM, Austin B, Colwell RR (1977) Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Can J Microbiol 23:733–750

    Article  CAS  PubMed  Google Scholar 

  • Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  CAS  PubMed  Google Scholar 

  • McMurdie P, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:4

    Article  CAS  Google Scholar 

  • Mikita-Barbato RA, Kelly JJ, Tate RL (2015) Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biol Biochem 86:67–77

    Article  CAS  Google Scholar 

  • Moossavi S, Atakora F, Fehr K, Khafipour E (2020) Biological observations in microbiota analysis are robust to the choice of 16S rRNA gene sequencing processing algorithm: case study on human milk microbiota. BMC Microbiol 20:290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausch J, Kuzyakov Y (2017) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol 24:1

    Article  Google Scholar 

  • Pei Junmin Dijkstra FA, Li J, Fang C, Wu J (2020) Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biol Biochem 142:107700

    Article  CAS  Google Scholar 

  • Razzaghi F, Obour PB, Arthur E (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361:114055

    CAS  Google Scholar 

  • Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141

    Article  CAS  Google Scholar 

  • Saratale GD, Oh SE (2011) Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. Biodegradation 22:905–919

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schippers A, Schumann P, Spröer C (2005) Nocardioides oleivorans sp, nov, a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 55:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Schwarz A, Adetutu EM, Juhasz AL, Aburto-Medina A, Ball AS, Shahsavari E (2018) Microbial degradation of phenanthrene in pristine and contaminated sandy soils. Microb Ecol 75:888–902

    Article  CAS  PubMed  Google Scholar 

  • Song N, Cai HY, Yan ZS, Jiang HL (2013) Cellulose degradation by one mesophilic strain Caulobacter sp, FMC1 under both aerobic and anaerobic conditions. Bioresour Technol 131:281–287

    Article  CAS  PubMed  Google Scholar 

  • Tian SZ, Pu X, Luo GY, Zhao LH, Xu LH, Li WJ, Luo Y (2013) Isolation and characterization of new p-terphenyls with antifungal antibacterial and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J Agric Food Chem 61:3006–3012

    Article  CAS  PubMed  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of s-triazine herbicide metabolism by a nocardioides sp, isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhong B, Shafi M, Ma J, Guo J, Wu J, Ye Z, Liu D, Jin H (2019) Effects of biochar on growth and heavy metals accumulation of moso bamboo (Phyllostachy pubescens) soil physical properties and heavy metals solubility in soil. Chemosphere 219:510–516

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lan X, Xu X, Fang Y, Singh BP, Sardans J, Romero E, Peñuelas J, Wang W (2020) Steel slag and biochar amendments decreased CO2 emissions by altering soil chemical properties and bacterial community structure over two-year in a subtropical paddy field. Sci Total Environ 740:140403

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chen D, Shen J, Yuan Q, Fan F, Wei W, Li Y, Wu J (2021) Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric Ecosyst Environ 311:107291

    Article  CAS  Google Scholar 

  • Wei L, Ge T, Zhu Z, Luo Y, Yang Y, Xiao M, Yan Z, Li Y, Wu J, Kuzyakov Y (2021) Comparing carbon and nitrogen stocks in paddy and upland soils: accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398:115121

    Article  CAS  Google Scholar 

  • Weng Z, Van Zwieten L, Singh BP, Kimber S, Morris S, Cowie A, Macdonald LM (2015) Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol Biochem 90:111–121

    Article  CAS  Google Scholar 

  • Weng Z, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S, Macdonald LM, Rose TJ, Rose MT, Kimber SWL, Morris S, Cozzolino D, Araujo JR, Archanjo BS, Cowie A (2017) Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat Clim Chang 7:371–376

    Article  CAS  Google Scholar 

  • Weng Z, Liu X, Eldridge S, Wang H, Rose T, Rose M, Rust J, Singh BP, Tavakkoli E, Tang C, Ou H, Van Zwieten L (2020) Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of nitrogen for plant uptake: a dual 13C and 15N isotope three-source-partitioning study. Soil Biol Biochem 146:107792

    Article  CAS  Google Scholar 

  • Whitman T, Enders A, Lehmann J (2014) Biochar additions to soil counteract positive priming of soil carbon mineralization by plants. Soil Biol Biochem 73:33–41

    Article  CAS  Google Scholar 

  • Whitman T, Pepe-Ranney C, Enders A, Koechli C, Campbell A, Buckley DH, Lehmann J (2016) Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. The ISME J 10:2918–2930

    Article  CAS  PubMed  Google Scholar 

  • Whitman T, DeCiucies S, Hanley K, Enders A, Woolet J, Lehmann J (2021) Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils. Applied and Environ Microbiol 87:8

    Article  Google Scholar 

  • Woolet J, Whitman T (2020) Pyrogenic organic matter effects on soil bacterial community composition. Soil Biol Biochem 141:107678

    Article  CAS  Google Scholar 

  • Wu Q, Lian R, Bai M, Bao J, Liu Y, Li S, Liang C, Qin H, Chen J, Xu Q (2021) Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil. Biol Fertil Soils 57:793–807

    Article  CAS  Google Scholar 

  • You X, Suo F, Yin S, Wang X, Zheng H, Fang S, Zhang C, Li F, Li Y (2021) Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. J Hazard Mater 417:126047

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Chen L, Pan S, Li Y, Kuzyakov Y, Xu J, Brookes PC, Luo Y (2018) Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms. Eur J Soil Sci 69:521–534

    Article  CAS  Google Scholar 

  • Yu J, Pavia MJ, Deem LM, Crow SE, Deenik JL, Penton CR (2020) DNA-stable isotope probing shotgun metagenomics reveals the resilience of active microbial communities to biochar amendment in Oxisol soil. Front Microbiol 11:2718

    Google Scholar 

  • Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53:77–87

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Zhejiang Provincial Natural Science Foundation of China under Grant Number of R19D010005, and National Science Foundation of China (U1901601).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. designed the research. Y.Y.F. contributed to the acquisition, analysis, or interpretation of data and drafted the manuscript, and all authors were involved in revising the manuscript and approving the final version.

Corresponding author

Correspondence to Yu Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Open research statement

Sequencing data are available from the NCBI under the study accession number: SUB10465147.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1299 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Luo, Y., Auwal, M. et al. Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biol Fertil Soils 58, 565–577 (2022). https://doi.org/10.1007/s00374-022-01643-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-022-01643-y

Keywords

Navigation