Skip to main content
Log in

Variations in the composition of tea leaves and soil microbial community

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

An analysis of soil chemical properties and microbial community compositions in spring, summer, and autumn over a growing season was conducted at three tea farms managed using the same cultivation method on Jeju Island, Korea. The contents of SOM (soil organic matter), TC (total C), TN (total N), TS (total S), potassium (K+), and lithium (Li+) increased from spring to autumn, and significant differences were observed among tea farms. Across all tea farms, the dominant bacterial phyla were Gammaproteobacteria (25.84 ± 1.66%), Alphaproteobacteria (17.99 ± 0.51%), Actinobacteria (18.38 ± 1.29%), and Acidobacteria (14.49 ± 0.79%), and the dominant fungal phyla were Ascomycota (45.16 ± 1.57%), Basidiomycota (26.76 ± 1.79%), and Mortierellomycota (23.59 ± 2.43%). We found distinct differences in the composition of the bacterial community among tea farms, whereas strong seasonal variations were observed in the composition of the fungal community. Important factors in determination of the bacterial relative abundance included water content, SOM, soil pH, EC (electrical conductivity), and contents of DOC (dissolved organic C), ammonium (NH4+), calcium (Ca2+), K+, and magnesium (Mg2+); however, only EC, DOC, and nitrate (NO3) were important factors in the fungal relative abundance. The differences in soil chemical properties and microbial community compositions among tea farms could be attributed to the differences in environmental factors depending on the geographic location of tea farms. Seasonal variations in the contents of chemical components of tea leaves, such as catechins, total amino acids, theanine, and caffeine, were greater than the differences among the farms. The quality parameters of tea showed significant correlation with soil fungal diversity indices, indicating the possibility for use of soil fungal diversity as a biological indicator of tea quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Sequence data is available from the authors upon request. The dataset reported in this study has been deposited in the NCBI Sequence Read Archive (SRA) database (Accession number [PRJNA759091] and [PRJNA759080]).

Code availability

Not applicable.

References

  • Ahmed S, Griffin TS, Kraner D, Schaffner MK, Sharma D, Hazel M, Leitch AL, Orians CM, Han W, Stepp JR, Robbat A, Matyas C, Long C, Xue D, Houser RF, Cash SB (2019) Environmental factors variably impact tea secondary metabolites in the context of climate change. Front Plant Sci 10:939

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Stepp JR, Orians C, Griffin T, Matyas C, Robbat A, Cash S, Xue Y, Long C, Unachukwu U, Buckley S, Small D, Kennelly E (2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE 9:e109126.

  • Anandan R, Dharumadurai D, Manogaran GP (2016) An introduction to actinobacteria. In: Dhanasekaran D, Jiang Y (Eds) Actinobacteria: basics and biotechnology applications. Intechopen, London, UK, pp 1–37.

  • Arellano K, Vazquez J, Park H, Lim J, Ji Y, Kang HJ, Cho D, Jeong HW, Holzapfel WH (2020) Safety evaluation and whole-genome annotation of Lactobacillus plantarum strains from different sources with special focus on isolates from green tea. Probiotics Antimicrob Proteins 12:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Belda I, Zarraonaindia I, Perisin M, Palacios A, Acedo A (2017) From vineyard soil to wine fermentation: microbiome approximations to explain the “terroir” concept. Front Mcrobiol 8:821

    Article  Google Scholar 

  • Bhattacharyya P, Sarmah S (2018) The role of microbes in tea cultivation. In: Sharma VS, Gunasekare MTK (Eds) Global tea science: current status and future needs. Burleigh Dodds science publishing, Cambridge, UK, pp 155-188.

  • Bianchi SR, Miyazawa M, de Oliveira EL, Pavan MA (2008) Relationship between the mass of organic matter and carbon in soil. Braz Arch Biol Technol 51:263–269

    Article  CAS  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich N, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo JR, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang LJ, Kaehler BD, Bin Kang K, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, vanderHooft Vargas Vazquez-BaezaVogtmann von Hippel Walters Wan Wang Warren Weber Williamson Willis XuZaneveld Zhang Zhu KnightCaporaso JJJFYEMWYMJKCCHDADZZJRYQRJG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea-a review. J Am Coll Nutr 25:79–99

    Article  CAS  PubMed  Google Scholar 

  • Caffin N, D’Arcy B, Yao L, Rintoul G (2004) Developing an index of quality for Australian tea. RIRDC Publication No. 04/033, Project No. UQ-88A, Rural Industries Research and Development Corporation Publication, Queensland, Australia, pp. 1–192.

  • Cai F, Pang G, Li R, Li R, Gu X, Shen Q, Chen W (2017) Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biol Fertil Soils 53:861–872

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Chen R, Wang L, Jiang L, Yang F, Zheng S, Wang G, Lin X (2016) Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci Rep 6:25815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan T, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:1–9

    Article  Google Scholar 

  • Chan SC (2012) Terroir and green tea in China: the case of Meijiawu dragon well (Longjing) tea. In: Augustin-Jean L, Ilbert H, Saavedra-Rivano N (eds) Geographical indications and international agricultural trade: the challenge for Asia. Palgrave Macmillan, London, UK, pp 226–238

    Chapter  Google Scholar 

  • Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53:132–140

    Article  CAS  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ, Liu L, Deng Y, Rillig MC, Chen BD (2017) Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol Biochem 110:12–21

    Article  CAS  Google Scholar 

  • Chen WC, Ko CH, Su YS, Lai WA, Shen FT (2021) Metabolic potential and community structure of bacteria in an organic tea plantation. Appl Soil Ecol 157:103762

    Article  Google Scholar 

  • Corneo PE, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013) Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiol Ecol 84:588–602

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Qi D, Yang T, Lv H, Guo L, Zhang Y, Zhu Y, Peng Q, Xie D, Tan J, Lin Z (2015) Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J Agric Food Chem 63:9869–9878

    Article  CAS  PubMed  Google Scholar 

  • Dang MV (2005) Soil-plant nutrient balance of tea crops in the northern mountainous region. Vietnam Agric Ecosyst Environ 105:413–418

    Article  CAS  Google Scholar 

  • Duncan JMA, Saikia SD, Gupta N, Biggs EM (2016) Observing climate impacts on tea yield in Assam, India. Appl Geogr 77:64–71

    Article  Google Scholar 

  • Dutta J, Handique PJ, Thakur D (2015) Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front Microbiol 6:1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett DB, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10:2369

    Article  PubMed  PubMed Central  Google Scholar 

  • Evizal R, Tohari T, Prijambada ID, Widada J, Widianto D (2012) Soil bacterial diversity and productivity of coffee-shade tree agro-ecosystems. J Trop Soils 17:181–187

    Article  Google Scholar 

  • FAO (2018) CCP Intergovernmental group on tea, Current market situation and medium term outlook. CCP:TE 18/CRS1 pp. 1–16.

  • Fernandez PL, Pablos F, Martin MJ, Gonzalez AG (2002) Study of catechin and xanthine tea profiles as geographical tracers. J Agric Food Chem 50:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes -application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gong AD, Lian SB, Wu NN, Zhou YJ, Zhao SQ, Zhang LM, Cheng L, Yuan HY (2020) Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biol 20:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunathilaka RPD, Tularam GA (2016) The tea industry and a review of its price modelling in major tea producing countries. J Manag Strategy 7:34–39

    Article  Google Scholar 

  • Gupta VRGV, Bramley RGV, Greenfield P, Yu J, Herderich MJ (2019) Vineyard soil microbiome composition related to rotundone concentration in Australian cool climate ‘Peppery’ shiraz grapes. Front Microbiol 10:1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Han W, Kemmitt SJ, Brookes PC (2007) Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biol Biochem 39:1468–1478

    Article  CAS  Google Scholar 

  • Han WY, Huang JG, Li X, Li ZX, Ahammed GJ, Yan P, Stepp JR (2017) Altitudinal effects on the quality of green tea in east China: a climate change perspective. Eur Food Res Technol 243:323–330

    Article  CAS  Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JC, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Change Biol 17:1637–1645

    Article  Google Scholar 

  • Ho CT, Zheng X, Li S (2015) Tea aroma formation. Food Sci Human Wellness 4:9–27

    Article  Google Scholar 

  • Horie H, Kohata K (1998) Application of capillary electrophoresis to tea quality estimation. J Chromatogr A 802:219–223

    Article  CAS  Google Scholar 

  • Hou J, Wu L, Liu W, Ge Y, Mu T, Zhou T, Li Z, Zhou J, Sun X, Luo Y, Christie P (2020) Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Sci Total Environ 730:139116

    Article  CAS  PubMed  Google Scholar 

  • Jurburg SD, Shek KL, McGuire K (2020) Soil microbial composition varies in response to coffee agroecosystem management. FEMS Microbiol Ecol 96:1–11

    Article  Google Scholar 

  • Kamau DM, Spiertz JHJ, Oenema O (2008) Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant Soil 307:29–39

    Article  CAS  Google Scholar 

  • Kaneko S, Kumazawa K, Masuda H, Henze A, Hofmann T (2006) Molecular and sensory studies on the umami taste of Japanese green tea. J Agric Food Chem 54:2688–2694

    Article  CAS  PubMed  Google Scholar 

  • Karak T, Paul RK, Boruah RK, Sonar I, Bordoloi B, Dutta AK, Borkotoky B (2015) Major soil chemical properties of the major tea-growing areas in India. Pedosphere 25:316–328

    Article  CAS  Google Scholar 

  • Khokhar S, Magnusdottir SGM (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee J, Yang Y, Yun J, Ding W, Yuan J, Khim JS, Kwon BO, Kang H (2021) Microbial decomposition of soil organic matter determined by edaphic characteristics of mangrove forests in East Asia. Sci Total Environ 763:142972

    Article  CAS  PubMed  Google Scholar 

  • Kito M, Kokura H, Izaki J, Sasaoka K (1968) Theanine, a precursor of the phloroglucinol nucleus of catechins in tea plants. Phytochemistry 7:599–603

    Article  CAS  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1.

  • Kodama S, Ito Y, Nagase H, Yamashita T, Kemmei T, Yamamoto A, Hayakawa K (2007) Usefulness of catechins and caffeine profiles to determine growing areas of green tea leaves of a single variety, Yabukita, in Japan. J Health Sci 53:491–495

    Article  CAS  Google Scholar 

  • Krahe JC, Krahe MA, Roach PD (2018) Development of an objective measure of quality and commercial value of Japanese-styled green tea (Camellia L. sinensis): the quality index tool. J Food Sci Technol 55:2926–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Lee JE, Lee BJ, Chung JO, Hwang JA, Lee SJ, Lee Ch, Hong YS (2010) Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a 1H NMR-based metabolomics study. J Agric Food Chem 58:10582–10589

    Article  CAS  PubMed  Google Scholar 

  • Lee LS, Choi JH, Son N, Kim SH, Park JD, Jang DJ, Jeong Y, Kim HJ (2013) Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J Agric Food Chem 61:332–338

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Li Z, Li ZW, Jiang YH, Weng BQ, Lin WX (2016) Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J Appl Microbiol 121:787–799

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Li Z, Arafat Y, Lin WX (2020) Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Ann Microbiol 70:7

    Article  CAS  Google Scholar 

  • Liang YR, Ye Q, Jin J, Liang H, Lu JL, Du YY, Dong JJ (2008) Chemical and instrumental assessment of green tea sensory preference. Int J Food Prop 11:258–272

    Article  CAS  Google Scholar 

  • Mozumder NHMR, Lee YR, Hwang KH, Lee MS, Kim EH, Hong YS (2020) Characterization of tea leaf metabolites dependent on tea (Camellia sinensis) plant age through 1H NMR-based metabolomics. Appl Biol Chem 63:10

    Article  Google Scholar 

  • Munson SM, Lauenroth WK, Burke IC (2012) Soil carbon and nitrogen recovery on semiarid Conservation Reserve Program lands. J Arid Environ 79:25–31

    Article  Google Scholar 

  • Nannipieri P, Penton CR, Purahong W, Schloter M, van Elsas JD (2019) Recommendations for soil microbiome analyses. Biol Fertil Soils 55:765–766

    Article  Google Scholar 

  • Pandey A, Palni LMS (2002) Tea rhizosphere: characteristics features, microbial diversity and applications. Int J Tea Sci 1:10–24

    Google Scholar 

  • Park H, Cho D, Huang E, Seo J, Kim W, Todorov SD, Ji Y, Holzapfel WH (2020) Amelioration of alcohol induced gastric ulcers through the administration of Lactobacillus plantarum APSulloc 331261 isolated from green tea. Front Microbiol 11:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieristѐ M, Forey E, Sahraoui AL, Meglouli H, Laruelle F, Delporte P, Robson M, Chauvat M (2020) Spectral composition of sunlight affects the microbial functional structure of beech leaf litter during the initial phase of decomposition. Plant Soil 451:515–530

    Article  Google Scholar 

  • Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM (2020) Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest. New Phytol 226:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Ren C, Chen J, Lu X, Doughty R, Zhao F, Zhong Z, Han X, Yang G, Feng Y, Ren G (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol Biochem 116:4–10

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Shi L, Mortimer PE, Slik JWF, Zou X, Xu J, Feng W, Qiao L (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 64:305–315

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Sterkenburg E, Bahr A, Durling MB, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158

    Article  PubMed  Google Scholar 

  • Sun L, Xun W, Huang T, Zhang G, Gao J, Ran W, Li D, Shen Q, Zhang R (2016) Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments. Soil Biol Biochem 96:207–215

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel AD, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  Google Scholar 

  • Tokuda SI, Hayatsu M (2002) Soil microbial biomass and fluorescein diacetate hydrolytic activity in Japanese acidic tea field soils. Soil Sci Plant Nutr 48:865–869

    Article  CAS  Google Scholar 

  • Too JC, Kinyanjui T, Wanyoko JK, Wachira FN (2015) Effect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis). Food Nutr Sci 6:1014

    CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Veloso TGR, da Silva MdCS, Cardoso WS, Guarconi RC, Kasuya MCM, Pereira LL (2020) Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Sci Rep 10:14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagg C, Bender FB, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur Food Res Technol 233:1049–1055

    Article  CAS  Google Scholar 

  • Wang S, Li T, Zheng Z, Chen HYH (2019) Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci Total Environ 654:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sinsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp 315-322.

  • Xu W, Song Q, Li D, Wan X (2012) Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J Agric Food Chem 60:7064–7070

    Article  CAS  PubMed  Google Scholar 

  • Xue D, Yao H, Huang C (2006) Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant Soil 288:319–331

    Article  CAS  Google Scholar 

  • Xue C, Hao Y, Pu X, Penton C, Wang Q, Zhao M, Zhang B, Ran W, Huang Q, Shen Q, Tiedje J (2019) Effect of LSU and ITS Genetic Markers and Reference Databases on Analyses of Fungal Communities. Biol Fertil Soils 55:79–88

    Article  CAS  Google Scholar 

  • Yan P, Wu L, Wang D, Fu J, Shen C, Li X, Zhang L, Zhang L, Fan L, Wenyan H (2020) Soil acidification in Chinese tea plantations. Sci Total Environ 715:136963

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lee SH, Jang I, Kang H (2020) Soil bacterial community structures across biomes in artificial ecosystems. Ecol Eng 158:106067

    Article  Google Scholar 

  • Yao L, Caffin N, D’Arcy B, Jiang Y, Shi J, Singanusong R, Liu X, Datta N, Kakuda Y, Xu Y (2005) Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J Agric Food Chem 53:6477–6483

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sun L, Wang Y, Fan K, Xu Q, Li Y, Ma Q, Wang J, Ren W, Ding Z (2020) Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol 20:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wu X, Nie C, Wu T, Dai W, Liu H, Yang R (2012) Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE. World J Microbiol Biotechnol 28:1967–1979

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yu C, Li M (2017) Effects of geographical origin, variety, season and their interactions on minerals in tea for traceability. J Food Compos Anal 63:15–20

    Article  CAS  Google Scholar 

  • Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang Y, Brown JH (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun 7:12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumsteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564

    Article  PubMed  Google Scholar 

Download references

Funding

This research has been supported by funds from the AMOREPACIFIC CORPORATION and the Ministry of Education of Korea (2020R1I1A2072824). JK was supported by the fellowship funded by the Ministry of Education of Korea (2019R1A6A3A01091184).

Author information

Authors and Affiliations

Authors

Contributions

YY, JK, and HK designed the research; YY and JK conducted the experiments; JOC and DC assisted in sampling; JHR, YDH, and WKK contributed to data collection; YY wrote the manuscript; JK, JOC, DC, and HK revised the manuscript.

Corresponding author

Correspondence to Hojeong Kang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1077 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kim, J., Chung, JO. et al. Variations in the composition of tea leaves and soil microbial community. Biol Fertil Soils 58, 167–179 (2022). https://doi.org/10.1007/s00374-021-01615-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01615-8

Keywords

Navigation