Skip to main content
Log in

Yak dung pat fragmentation decreases yield-scaled growing-season nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A 120-day field experiment was conducted to investigate the responses of soil N2O emissions, plant biomass N content, and N cycling-related functional genes to yak (Bos grunniens) dung pat size, including full-size dung pat (FDP), 1/4FDP, 1/8FDP, and 1/16FDP (i.e., FDP split into four, eight, and sixteen equal-sized dung pat fragments) in an alpine steppe on the Qinghai-Tibetan Plateau. The yield-scaled and cumulative N2O emissions were lower in the 1/16FDP and 1/8FDP than in the FDP and 1/4FDP treatments. In addition, the 1/16FDP treatment had the smallest N2O emission factor (0.002%), possibly due to lower denitrification as shown by the lower nisS, nirK, and nosZ gene copy numbers in the first (day 30) and second (day 72) samplings, and increased aboveground plant N concentration and content, which was 23–32% and 21–36%, respectively, greater than in the other treatments. In conclusion, splitting the yak dung pat into 1/16 fragments would be an effective strategy for managing yak dung to reduce N2O emissions and improve aboveground plant biomass N content which enhances the sustainability of alpine steppe ecosystems on the Qinghai-Tibetan Plateau. The implication from this study is that long-term field experiments should be conducted to further investigate the potential antagonistic or synergistic effects of yak dung pat fragmentation combined with other amendments (e.g., nitrogen inhibitors, lime, or biochar) on reducing N2O emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DE, Mendham DS, Bhupinderpal-Singh CA, Wang W, Dalal RC, Raison RJ (2009) Nitrous oxide and methane emissions from soil are reduced following afforestation of pasture lands in three contrasting climatic zones. Aust J Soil Res 47:443–458

    Article  CAS  Google Scholar 

  • Australia (2019) National Inventory Report 2017. Department of Climate Change and Energy Efficiency, Australia.

  • Bailey VL, Peacock AD, Smith JL, Bolton HJ (2002) Relationships between soil microbial biomass determined by chloroform fumigation–extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem 34:1385–1389

    Article  CAS  Google Scholar 

  • Bolan NS, Saggar S, Luo J, Bhandral R, Singh J (2004) Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modeling, environmental implications, and mitigation. Adv Agron 84:37–120

    Article  CAS  Google Scholar 

  • Bouwman AF (1998) Environmental science: nitrogen oxides and tropical agriculture. Nature 392:866–867

    Article  CAS  Google Scholar 

  • Brassard P, Godbout S, Palacios JH, Jeanne T, Hogue R, Dube P, Limousy L, Raghavan V (2018) Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study. Geoderma 327:73–84

    Article  CAS  Google Scholar 

  • Brye KR, Norman JM, Bundy LG, Gower ST (2001) Nitrogen and carbon leaching in agroecosystems and their role in denitrification potential. J Environ Qual 30:58–70

    Article  CAS  PubMed  Google Scholar 

  • Butterbach-Bahl K, Baggs L, Dannenmann M, Kiese R (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos T R Soc B 368:20130122

    Article  CAS  Google Scholar 

  • Cai YJ, Akiyama H (2016) Nitrogen loss factors of nitrogen trace gas emissions and leaching from excreta patches in grassland ecosystems: a summary of available data. Sci Total Environ 572:185–195

    Article  CAS  PubMed  Google Scholar 

  • Cai YJ, Ding WX, Luo JF (2013a) Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement. Atmos Environ 65:112–122

    Article  CAS  Google Scholar 

  • Cai YJ, Wang XD, Ding WX, Tian LL, Zhao H, Lu XY (2013b) Potential short-term effects of yak and Tibetan sheep dung on greenhouse gas emissions in two alpine grassland soils under laboratory conditions. Biol Fert Soils 49:1215–1226

    Article  CAS  Google Scholar 

  • Cai YJ, Wang XD, Tian LL, Zhao H, Lu XY, Yan Y (2014) The impact of excretal returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau. Soil Biol Biochem 76:90–99

    Article  CAS  Google Scholar 

  • Cai YJ, Chang SX, Cheng Y (2017) Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies. Earth-Sci Rev 171:44–57

    Article  CAS  Google Scholar 

  • Chadwick DR, Cardenas LM, Dhanoa MS, Donovan N, Misselbrook T, Williams JR, Thorman RE, McGeough KL, Watson CJ, Bell M (2018) The contribution of cattle urine and dung to nitrous oxide emissions: quantification of country specific emission factors and implications for national inventories. Sci Total Environ 635:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Cai YJ, Wang SQ (2016) Yak and Tibetan sheep dung return enhance soil N supply and retention in two alpine grasslands in the Qinghai-Tibetan Plateau. Biol Fert Soils 52:413–422

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Podolyan A, Edwards GR, de Klein CA, Dynes R, Woods R (2016) The potential of using alternative pastures, forage crops and gibberellic acid to mitigate nitrous oxide emissions. J Soil Sediment 16:2252–2262

    Article  CAS  Google Scholar 

  • Dimander SO, Höglund J, Waller PJ (2003) Disintegration of dung pats from cattle treated with the ivermectin anthelmintic bolus, or the biocontrol agent Duddingtonia flagrans. Acta Vet Scand 44:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding MJ, Zhang YL, Sun XM, Liu LS, Wang ZF, Bai WQ (2013) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Sci Bull 58:396–405

    Article  Google Scholar 

  • Du ZY, Wang XD, Xiang J, Wu Y, Zhang B, Yan Y, Zhang XK, Cai YJ (2021) Yak dung pat fragmentation affects its carbon and nitrogen leaching in Northern Tibet China. Agr Ecosyst Environ 310:107301

    Article  CAS  Google Scholar 

  • Flessa H, Dörsch P, Beese F, König H, Bouwman AF (1996) Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land. J Environ Qual 25:1366–1370

    Article  CAS  Google Scholar 

  • Fu YF, Liu CY, Lin F, Hu XX, Zheng XH, Zhang W, Cao GM (2018) Quantification of year-round methane and nitrous oxide fluxes in a typical alpine shrub meadow on the Qinghai-Tibetan Plateau. Agr Ecosyst Environ 255:27–36

    Article  CAS  Google Scholar 

  • Hoeft I, Steude K, Wrage N, Veldkamp E (2012) Response of nitrogen oxide emissions to grazer species and plant species composition in temperate agricultural grassland. Agr Ecosyst Environ 151:34–43

    Article  CAS  Google Scholar 

  • Huang P, Zhang JB, Zhu AN, Xin XL, Zhang CZ, Ma DH, Yang S, Mirza ZA, Wu SJ (2015) Coupled water and nitrogen (N) management as a key strategy for the mitigation of gaseous N losses in the Huang-Huai-Hai Plain. Biol Fert Soils 51:333–342

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2013 the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change.

  • IPCC (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application).

  • Lin XW, Wang SP, Ma XZ, Xu GP, Luo CY, Li YN, Jiang GM, Xie ZB (2009) Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan Plateau during summer grazing periods. Soil Biol Biochem 41:718–725

    Article  CAS  Google Scholar 

  • Liu CY, Holst J, Brüggemann N, Butterbach-Bahl K, Yao ZS, Han SH, Han XG, Zheng XH (2008) Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Adv Atmos Sci 25:748–756

    Article  CAS  Google Scholar 

  • Maljanen M, Martikkala M, Koponen HT, Virkajärvi P, Martikainen PJ (2007) Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil. Soil Biol Biochem 39:914–920

    Article  CAS  Google Scholar 

  • McMillan AM, Pal P, Phillips RL, Palmada T, Berben PH, Jha N, Saggar S, Luo J (2016) Can pH amendments in grazed pastures help reduce N2O emissions from denitrification? – The effects of liming and urine addition on the completion of denitrification in fluvial and volcanic soils. Soil Biol Biochem 93:90–104

    Article  CAS  Google Scholar 

  • Meyer S, Gruning MM, Beule L, Karlovsky P, Joergensen RG, Sundrum A (2021) Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biol Fert Soils 57:767–779

    Article  CAS  Google Scholar 

  • Moral R, Bustamante MA, Chadwick DR, Camp V, Misselbrook TH (2012) N and C transformations in stored cattle farmyard manure, including direct estimates of N2 emission. Resour Conserv Recy 63:35–42

    Article  Google Scholar 

  • Nkonge C, Ballance GM (1982) A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests. J Agr Food Chem 30:416–420

    Article  CAS  Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosys 72:51–65

    Article  CAS  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biol 17:1497–1504

    Article  Google Scholar 

  • Qin HL, Wang D, Xing XY, Tang YF, Wei XM, Chen XB, Zhang WZ, Chen AL, Li LL, Liu Y, Zhu BL (2021) A few key nirK- and nosZ-denitrifier taxa play a dominant role in moisture-enhanced N2O emissions in acidic paddy soil. Geoderma 385:114917

    Article  CAS  Google Scholar 

  • Rafique R, Hennessy D, Kiely G (2011) Nitrous oxide emission from grazed grassland under different management systems. Ecosystems 14:563–582

    Article  CAS  Google Scholar 

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Singh BP, Mehra P, Fang Y, Dougherty W, Saggar S (2021) Nitrous oxide emissions from cow urine patches in an intensively managed grassland: influence of nitrogen loading under contrasting soil moisture. Sci Total Environ 757:143790

    Article  CAS  PubMed  Google Scholar 

  • Sordi A, Dieckow J, Bayer C, Alburquerque MA, Piva JT, Zanatta JA, Tomazi M, da Rosa CM, de Moraes A (2014) Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland. Agr Ecosyst Environ 190:94–103

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40:468–476

    Article  CAS  PubMed  Google Scholar 

  • Tully KL, Abwanda S, Thiongo M, Mutuo P, Rosenstock TS (2017) Nitrous oxide and methane fluxes from urine and dung deposited on Kenyan pastures. J Environ Qual 46:921–929

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden TJ, Luo J, de Klein CA, Hoogendoorn CJ, Littlejohn RP, Rys GJ (2011) Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agr Ecosyst Environ 141:426–436

    Article  CAS  Google Scholar 

  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Kessel CV (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913

    Article  CAS  Google Scholar 

  • Van Middelaar CE, Berentsen PBM, Dijkstra J, De Boer IJM (2013) Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: the level of analysis matters. Agr Syst 121:9–22

    Article  Google Scholar 

  • Virkajärvi P, Maljanen M, Saarijärvi K, Haapala J, Martikainen PJ (2010) N2O emissions from boreal grass and grass-clover pasture soils. Agr Ecosyst Environ 137:59–67

    Article  CAS  Google Scholar 

  • Wachendorf C, Lampe C, Taube F, Dittert K (2008) Nitrous oxide emissions and dynamics of soil nitrogen under 15N-labeled cow urine and dung patches on a sandy grassland soil. J Plant Nutr Soil Sci 171:171–180

    Article  CAS  Google Scholar 

  • Wiener G, Jianlin H, Ruijin L (2018) Yak, Encyclopedia of animal science-(Two-Volume Set). CRC Press, pp. 1121–1124.

  • Wu Q, Kwak JH, Chang SX, Han GD, Gong XQ (2020) Cattle urine and dung additions differently affect nitrification pathways and greenhouse gas emission in a grassland soil. Biol Fert Soils 56:235–247

    Article  CAS  Google Scholar 

  • Xu ZR, Cheng SK, Zhen L, Pan Y, Zhang XZ, Wu JX, Zou XP, Bijaya GDC (2013) Impacts of dung combustion on the carbon cycle of alpine grassland of the north Tibetan Plateau. Environ Manage 52:441–449

    Article  PubMed  Google Scholar 

  • Yamulki S, Jarvis SC, Owen P (1998) Nitrous oxide emissions from excreta applied in a simulated grazing pattern. Soil Biol Biochem 30:491–500

    Article  CAS  Google Scholar 

  • Yamulki S, Wolf I, Bol R, Grant B, Brumme R, Veldkamp E, Jarvis SC (2000) Effects of dung and urine amendments on the isotopic content of N2O released from grasslands. Rapid Commun Mass Sp 14:1356–1360

    Article  CAS  Google Scholar 

  • Yao ZS, Yan GX, Wang R, Zheng XH, Liu CY, Butterbach-Bahl K (2019) Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmos Environ 212:183–193

    Article  CAS  Google Scholar 

  • Yu XJ, Xu CL, Muhammad I, Long RJ (2013) Effects of yak dung patch dropped in cold season on soil and pasture on the Qinghai-Tibetan Plateau. Acta Ecol Sin 33:241–244

    Article  Google Scholar 

  • New Zealand (2019) New Zealand’s greenhouse gas inventory 1990–2017. Ministry for the Environment, Wellington.

  • Zhang BZ, Penton CR, Yu ZH, Xue C, Chen QY, Chen ZR, Yan CS, Zhang Q, Zhao MX, Quensen JF, Tiedje JM (2021) A new primer set for Clade I nosZ that recovers genes from a broader range of taxa. Biol Fert Soils 57:523–531

    Article  CAS  Google Scholar 

  • Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, Xu H, Chen GX, Cai ZC, Yue J, Gu JX, Su F, Zou JW, Zhu JG (2008) Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 311:211–234

  • Zhu YH, Merbold L, Pelster D, Diaz-Pines E, Wanyama GN, Butterbach-Bahl K (2018) Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochem Cy 32:1589–1604

    Article  CAS  Google Scholar 

  • Zhu YH, Merbold L, Leitner S, Xia LL, Pelster DE, Diaz-Pines E, Diaz-Pines E, Abwanda S, Mutuo PM, Butterbach-Bahl K (2020) Influence of soil properties on N2O and CO2 emissions from excreta deposited on tropical pastures in Kenya. Soil Biol Biochem 140:107636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiaodan Wang of the Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, for help in the field study and Mr. Yiduo for assistance in gas and soil sampling.

Funding

This study was funded by the National Natural Science Foundation of China (41877085, 41573070, 41877088, 41807109, 42107249) and the Research and Development Fund of Zhejiang A&F University (2018FR005, 2018FR006, 2034020087).

Author information

Authors and Affiliations

Authors

Contributions

YJ Cai conceived the study and designed the experiments. RG Tang analyzed the overall data, made the figures, and wrote the manuscript. ZY Du did the experiment and analyzed part of the data. YJ Cai, YY Fang, A EI-Naggar, GD Zhu, ZY Du, BP Singh, and SX Chang revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yanjiang Cai.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24433 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Du, Z., Zhu, G. et al. Yak dung pat fragmentation decreases yield-scaled growing-season nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau. Biol Fertil Soils 57, 1103–1115 (2021). https://doi.org/10.1007/s00374-021-01601-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01601-0

Keywords

Navigation