Skip to main content

Advertisement

Log in

Visual analysis of air pollution spatio-temporal patterns

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Advances in air monitoring methods have made it possible to analyze large-scale air pollution phenomena. Mining potential air pollution information from large-scale air pollution data is an important issue in the current environmental field. Although direct data visualization provides an intuitive presentation, the method is less applicable in long-time domains with high temporal resolution. To better meet the analysis needs of domain experts, we design a visual analysis framework based on friendly multi-view interactions and novel visual view designs. This framework can explore the spatiotemporal dynamics of multiple pollution data. In this paper, a two-stage cluster analysis method is proposed to extract possible transport patterns from large-scale pollutant transport trajectories. This method will be substantially helpful for domain experts to make relevant decisions. At the same time, the index is constructed from long-time series data at the grid point in the specific transport trajectories. This structure can help experts complete the sketch match with custom time resolution. It can assist domain experts in extracting key possible time-varying features. Finally, we verified the validity through spatial and temporal case analysis for pollutant data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xu, X., Yang, H., Li, C.: Theoretical model and actual characteristics of air pollution affecting health cost: a review. Int. J. Environ. Res. Public Health (2022). https://doi.org/10.3390/ijerph19063532

    Article  Google Scholar 

  2. Pandya, S., Gadekallu, T.R., Maddikunta, P.K.R., Sharma, R.: A study of the impacts of air pollution on the agricultural community and yield crops (indian context). Sustainability (2022). https://doi.org/10.3390/su142013098

    Article  Google Scholar 

  3. Bachechi, C., Po, L., Rollo, F.: Big data analytics and visualization in traffic monitoring. Big Data Res. 27, 100292 (2022). https://doi.org/10.1016/j.bdr.2021.100292

    Article  Google Scholar 

  4. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (2021). https://doi.org/10.1145/3444690

    Article  Google Scholar 

  5. Guo, Y., Guo, S., Jin, Z., Kaul, S., Gotz, D., Cao, N.: Survey on visual analysis of event sequence data. IEEE Trans. Vis. Comput. Graph. 28(12), 5091–5112 (2022). https://doi.org/10.1109/TVCG.2021.3100413

    Article  Google Scholar 

  6. Taylor, G.I.: I. eddy motion in the atmosphere. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 215(523-537), 1–26 (1915). https://doi.org/10.1098/rsta.1915.0001

  7. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(1), 196–212 (1922). https://doi.org/10.1112/plms/s2-20.1.196

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Wang, T.: Worsening urban ozone pollution in china from 2013 to 2017—part 2: the effects of emission changes and implications for multi-pollutant control. Atmos. Chem. Phys. 20(11), 6323–6337 (2020). https://doi.org/10.5194/acp-20-6323-2020

    Article  Google Scholar 

  9. Dong, Z., Wang, S., Xing, J., Chang, X., Ding, D., Zheng, H.: Regional transport in beijing-tianjin-hebei region and its changes during 2014–2017: the impacts of meteorology and emission reduction. Sci. Total Environ. 737, 139792 (2020). https://doi.org/10.1016/j.scitotenv.2020.139792

    Article  Google Scholar 

  10. Ballesteros-González, K., Sullivan, A.P., Morales-Betancourt, R.: Estimating the air quality and health impacts of biomass burning in northern south America using a chemical transport model. Sci. Total Environ. 739, 139755 (2020). https://doi.org/10.1016/j.scitotenv.2020.139755

    Article  Google Scholar 

  11. Vander Hoorn, S., Johnson, J.S., Murray, K., Smit, R., Heyworth, J., Lam, S., Cope, M.: Emulation of a chemical transport model to assess air quality under future emission scenarios for the southwest of western australia. Atmosphere (2022). https://doi.org/10.3390/atmos13122009

    Article  Google Scholar 

  12. Tao, H., Xing, J., Pan, G., Pleim, J., Ran, L., Wang, S., Chang, X., Li, G., Chen, F., Li, J.: Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. Front. Environ. Sci. Eng. 16(4), 1–11 (2022). https://doi.org/10.1007/s11783-021-1478-3

    Article  Google Scholar 

  13. Kim, M.: Visualization of dynamic network evolution with quantification of node attributes. IEEE Trans. Netw. Sci. Eng. 8(3), 2316–2325 (2021). https://doi.org/10.1109/TNSE.2021.3087334

    Article  MathSciNet  Google Scholar 

  14. Feng, Z., Li, H., Zeng, W., Yang, S.-H., Qu, H.: Topology density map for urban data visualization and analysis. IEEE Trans. Vis. Comput. Graph. 27(2), 828–838 (2021). https://doi.org/10.1109/TVCG.2020.3030469

    Article  Google Scholar 

  15. Linhares, C.D., Ponciano, J.R., Paiva, J.G.S., Travençolo, B.A., Rocha, L.E.: A comparative analysis for visualizing the temporal evolution of contact networks: a user study. J. Vis. 24(5), 1011–1031 (2021). https://doi.org/10.1007/s12650-021-00759-x

    Article  Google Scholar 

  16. Meidiana, A., Hong, S.-H., Eades, P.: New quality metrics for dynamic graph drawing. In: International Symposium on Graph Drawing and Network Visualization, pp. 450–465 (2020). https://doi.org/10.1007/978-3-030-68766-3_35

  17. Ponciano, J.R., Linhares, C.D.G., Rocha, L.E.C., Faria, E.R., Travençolo, B.A.N.: Combining clutter reduction methods for temporal network visualization. In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. SAC ’22, pp. 1748–1755. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3477314.3507018

  18. Liu, Z., Huang, C., Yu, Y., Dong, J.: Motif-preserving dynamic attributed network embedding. In: Proceedings of the Web Conference 2021. WWW ’21, pp. 1629–1638. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3442381.3449821

  19. Sabarish, B.A., Karthi, R., Kumar, T.G.: Graph similarity-based hierarchical clustering of trajectory data. Procedia Comput. Sci. 171, 32–41 (2020). https://doi.org/10.1016/j.procs.2020.04.004

    Article  Google Scholar 

  20. Feng, K., Wang, P., Wu, J., Wang, W.: L-match: a lightweight and effective subsequence matching approach. IEEE Access 8, 71572–71583 (2020). https://doi.org/10.1109/ACCESS.2020.2987761

    Article  Google Scholar 

  21. Fernandez, I., Manglik, A., Giannoula, C., Quislant, R., Mansouri Ghiasi, N., Gómez-Luna, J., Gutierrez, E., Plata, O., Mutlu, O.: Accelerating Time Series Analysis via Processing using Non-Volatile Memories. arXiv e-prints (2022) https://doi.org/10.48550/arXiv.2211.04369

  22. Li, Z., Guo, J., Li, H., Wu, T., Mao, S., Nie, F.: Speed Up Similarity Search of Time Series Under Dynamic Time Warping, vol. 7, pp. 163644–163653 (2019). https://doi.org/10.1109/ACCESS.2019.2949838

  23. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences under dynamic time warping. KDD ’12, pp. 262–270. Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2339530.2339576

  24. Linardi, M., Palpanas, T.: Scalable data series subsequence matching with ulisse. VLDB J. 29(6), 1449–1474 (2020). https://doi.org/10.1007/s00778-020-00619-4

    Article  Google Scholar 

  25. Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., Gamboa, H.: Tsfel: time series feature extraction library. SoftwareX 11, 100456 (2020). https://doi.org/10.1016/j.softx.2020.100456

    Article  Google Scholar 

  26. Gao, J., Song, X., Wen, Q., Wang, P., Sun, L., Xu, H.: RobustTAD: Robust Time Series Anomaly Detection via Decomposition and Convolutional Neural Networks. arXiv e-prints (2020) https://doi.org/10.48550/arXiv.2002.09545arXiv:2002.09545

  27. Ceci, M., Corizzo, R., Japkowicz, N., Mignone, P., Pio, G.: Echad: embedding-based change detection from multivariate time series in smart grids. IEEE Access 8, 156053–156066 (2020). https://doi.org/10.1109/ACCESS.2020.3019095

    Article  Google Scholar 

  28. Boniol, P., Palpanas, T.: Series2Graph: Graph-based Subsequence Anomaly Detection for Time Series. arXiv e-prints, pp. 2207–12208 (2022) https://doi.org/10.48550/arXiv.2207.12208

  29. Liu, D., Veeramachaneni, K., Geiger, A., Li, V.O.K., Qu, H.: AQEyes: Visual Analytics for Anomaly Detection and Examination of Air Quality Data. arXiv e-prints (2021) https://doi.org/10.48550/arXiv.2103.12910

  30. Deng, Z., Weng, D., Chen, J., Liu, R., Wang, Z., Bao, J., Zheng, Y., Wu, Y.: Airvis: visual analytics of air pollution propagation. IEEE Trans. Vis. Comput. Graph. 26(1), 800–810 (2020). https://doi.org/10.1109/TVCG.2019.2934670

    Article  Google Scholar 

  31. Lu, W., Ai, T., Zhang, X., He, Y.: An interactive web mapping visualization of urban air quality monitoring data of china. Atmosphere (2017). https://doi.org/10.3390/atmos8080148

    Article  Google Scholar 

  32. Kalo, M., Zhou, X., Li, L., Tong, W., Piltner, R.: Chapter 8—sensing air quality: spatiotemporal interpolation and visualization of real-time air pollution data for the contiguous united states, pp. 169–196 (2020). https://doi.org/10.1016/B978-0-12-815822-7.00008-X

  33. Qu, D., Lin, X., Ren, K., Liu, Q., Zhang, H.: Airexplorer: visual exploration of air quality data based on time-series querying. J. Vis. 23(6), 1129–1145 (2020). https://doi.org/10.1007/s12650-020-00683-6

    Article  Google Scholar 

  34. Chen, P.: Visualization of real-time monitoring datagraphic of urban environmental quality. Eurasip J. Image Video Process. 2019(1), 1–9 (2019). https://doi.org/10.1186/s13640-019-0443-6

    Article  Google Scholar 

  35. Yang, X., Peng, H., Zhang, Q.: Visual analysis of heterogenous air pollution data. In: Proceedings of the 4th International Conference on Computer Science and Software Engineering. CSSE ’21, pp. 300–306. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3494885.3494940

  36. Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H., Zhu, L., Wang, W., Liu, B., Wang, Q., Chen, D., Pan, Y., Song, T., Li, F., Zheng, H., Jia, G., Lu, M., Wu, L., Carmichael, G.R.: A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in china based on the assimilation of surface observations from cnemc. Earth Syst. Sci. Data 13(2), 529–570 (2021). https://doi.org/10.5194/essd-13-529-2021

    Article  Google Scholar 

  37. Jooybari, S.A., Peyrowan, H., Rezaee, P., Gholami, H.: Evaluation of pollution indices, health hazards and source identification of heavy metal in dust particles and storm trajectory simulation using hysplit model (case study: Hendijan center dust, southwest of iran). Environ. Monit. Assess. 194(2), 107 (2022). https://doi.org/10.1007/s10661-022-09760-9

    Article  Google Scholar 

  38. Zaib, S., Lu, J., Bilal, M.: Spatio-temporal characteristics of air quality index (aqi) over northwest china. Atmosphere (2022). https://doi.org/10.3390/atmos13030375

    Article  Google Scholar 

  39. Ouyang, T., Shen, X.: Online structural clustering based on dbscan extension with granular descriptors. Inf. Sci. 607, 688–704 (2022). https://doi.org/10.1016/j.ins.2022.06.027

    Article  Google Scholar 

  40. Chen, J., Chen, B.: Development of driving cycle for light vehicle based on the ap clustering method. In: Computational and Experimental Simulations in Engineering: Proceedings of ICCES 2020, vol. 2, pp. 495–506 (2021). https://doi.org/10.1007/978-3-030-67090-0_40

  41. Chatzigeorgakidis, G., Skoutas, D., Patroumpas, K., Athanasiou, S., Skiadopoulos, S.: Indexing geolocated time series data. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’17. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3139958.3140003

  42. Wen, M., Ma, Y., Zhang, W., Tian, Y., Wang, Y.: High-resolution load profile clustering approach based on dynamic largest triangle three buckets and multiscale dynamic warping path under limited warping path length. J. Mod. Power Syst. Clean Energy (2022). https://doi.org/10.35833/MPCE.2022.000386

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R &D Program of China under Grand No. 2021YFE0108400 and partly supported by the National Natural Science Foundation of China under Grant No. 62172294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongke Bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Bi, C. Visual analysis of air pollution spatio-temporal patterns. Vis Comput 39, 3715–3726 (2023). https://doi.org/10.1007/s00371-023-02961-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02961-4

Keywords

Navigation