Skip to main content
Log in

Color image denoising via monogenic matrix-based sparse representation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Traditional sparse representation models usually treat color image channels independently, which ignore the relationship among the channels, resulting in inaccurate sparse coding coefficients. In this paper, we propose a novel vector-valued sparse representation model for color images using monogenic matrix. The proposed model treats color image as a monogenic matrix, which can transform independent color channels into a whole. In the dictionary learning stage, a corresponding effective dictionary learning method is designed by using monogenic matrix singular value decomposition, which conducts sparse basis selection in monogenic space. Then, a monogenic-based orthogonal matching pursuit algorithm is presented in the sparse coding stage. In order to demonstrate the effectiveness of the proposed sparse representation model, we apply the model to color image denoising. Extensive experimental results on color image denoising manifest that the proposed model outperforms the state-of-the-art schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.H.: Shiftable multi-scale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)

    Article  Google Scholar 

  2. Donoho, D.L.: Wedgelets: nearly minimax estimation of edges. Ann. Stat. 37(3), 859–897 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mallat, S., Lepennec, E.: Sparse geometric image representation with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  4. Candes, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hughes, J.M., Rockmore, D.N., Wang, Y.: Bayesian learning of sparse multiscale image representations. IEEE Trans. Image Process. 22(12), 4972–4983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kang, L.W., Hsu, C.C., Zhuang, B.Q., Lin, C.W., Yeh, C.H.: Learning-based joint super-resolution and deblocking for a highly compressed image. IEEE Trans. Multimed. 17(7), 921–934 (2015)

    Article  Google Scholar 

  7. Zheng, P., Zhao, Z.Q., Gao, J., Wu, X.D.: Image set classification based on cooperative sparse representation. Pattern Recognit. 63(6), 206–217 (2017)

    Article  Google Scholar 

  8. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  9. Yan, R.M., Shao, L., Liu, Y.: Nonlocal hierarchical dictionary learning using wavelets for image denoising. IEEE Trans. Image Process. 22(12), 4689–4698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, G., Lin, Z., Yan, S., Sun, J., Yong, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 2171–184 (2013)

    Google Scholar 

  11. Yu, R.Y.: Theory of dual tree complex wavelets. IEEE Trans. Signal Process. 56(9), 4263–4273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Portilla, J., Strela, V., Wainwrigh, M., Simoncelli, E.P.: Image denoising using scale mixutres of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2006)

    Article  Google Scholar 

  14. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  15. Qiang, Z., Baoxin, L.: Discriminative K-SVD for dictionary learning in face recgonition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698 (2010)

  16. Xu, Y., Yu, L.H., Xu, H.T., Zhang, H., Nguyen, T.: Vector sparse representation of color image using quaternion matrix analysis. IEEE Trans. Image Process. 24(4), 1315–1329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, L., Li, S., Ryan, P.M., Nie, Q., Kuo, A., Toth, C., Izatt, J., Farsiu, S.: Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013)

    Article  Google Scholar 

  18. Fang, L., Wang, C., Li, S., Benediktsson, J.A.: Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Meas. 66(7), 1646–1657 (2017)

    Article  Google Scholar 

  19. Fang, L., Li, S., David, C., Farsiu, S.: Segmentation based sparse reconstruction of optical coherence tomography images. IEEE Trans. Med. Imaging 36(2), 407–421 (2017)

    Article  Google Scholar 

  20. Peng, J.H., Cheung, G.: Graph Laplacian regularization for image denoising: analysis in the continuous domain. IEEE Trans. Image Process. 26(4), 1770–1785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie, Y., Gu, S.H., Liu, Y., Zuo, W.M., Zhang, W.S., Zhang, L.: Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842–4857 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olhede, S.C., Metikas, G.: The monogenic wavelet transform. IEEE Trans. Signal Process. 57(9), 3426–3441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. User, M., Sage, D., Ville, D.: Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402–2418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soulard, R., Carre, P., Maloigne, C.F.: Vector extension of monogenic wavelets for geometric representation of color images. IEEE Trans. Image Process. 22(3), 1070–1083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kumar, A., Chan, T.S.: Robust ear identification using sparse representation of local texture descriptors. Pattern Recognit. 46(1), 73–85 (2013)

    Article  Google Scholar 

  27. Demarcq, G., Mascarilla, L., Berthier, M., Courtellemont, P.: The color monogenic signal: application to color edge detection and color optical flow. Math. Imaging Vis. 40(3), 269–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeng, Z., Song, L., Zheng, Q., Chi, Y.: A new image retrieval model based on monogenic signal representation. J. Vis. Commun. Image Represent. 33(8), 85–93 (2015)

    Article  Google Scholar 

  29. Marianne, C., Thomas, O., Valerie, P.: The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM–FM images. Appl. Comput. Harmon. Anal. 39(6), 450–486 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Dong, G., Wang, N., Kuang, G.: Sparse representation of monogenic signal: with application to target recognition in SAR images. IEEE Signal Process. Lett. 21(8), 952–956 (2014)

    Article  Google Scholar 

  31. Zhang, L., Zhang, L., Guo, Z.: Monogenic-LBP: a new approach for rotation invariant texture classification. In: Proceedings of ICIP, pp. 2677–2680 (2010)

  32. Olhede, S.C., Ramirez, D., Schreier, P.J.: Detecting directionality in random fields using the monogenic signal. IEEE Trans. Inf. Theory 60(10), 6491–6510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Soulard, R., Carre, P.: Elliptical monogenic wavelets for the analysis and processing of color images. IEEE Trans. Signal Process. 64(6), 1535–1549 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Alessandrini, M., Bernard, O., Basarab, A., Liebott, H.: Multiscale optical flow computation from the monogenic signal. IRBM 34(1), 33–37 (2013)

    Article  Google Scholar 

  35. Held, S., Storath, M., Massopust, P., Forster, B.: Steerable wavelet frames based on the Riesz transform. IEEE Trans. Image Process. 19(3), 653–667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Garbor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  37. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bihan, N.L., Mars, J.: Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process. 84(7), 1177–2004 (2004)

    Article  MATH  Google Scholar 

  39. Bulow, T., Sommer, G.: Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Sginal Process. 49(11), 2844–2852 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44 (1993)

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China; the Grant Number is 61563037; Outstanding Youth Scheme of Jiangxi Province; the Grant Number is 20171BCB23057; Natural Science Foundation of Jiangxi Province; the Grant Number is 20171BAB202018; Department of Education Science and Technology of Jiangxi Province; the Grant Number is GJJ150755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, S. Color image denoising via monogenic matrix-based sparse representation. Vis Comput 35, 109–122 (2019). https://doi.org/10.1007/s00371-017-1456-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1456-8

Keywords

Navigation