Skip to main content
Log in

Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

This study explores the Holocene depositional succession at the IODP Expedition 347 sites M0061 and M0062 in the vicinity of the Ångermanälven River estuary in the Bothnian Sea sector of the Baltic Sea in northern Scandinavia. Site M0061 is located in a coastal offshore setting (87.9 m water depth), whereas site M0062 is fully estuarine (69.3 m water depth). The dataset comprises acoustic profiles and sediment cores collected in 2007 and late 2013 respectively. Three acoustic units (AUs) were recognized. Lowermost AU1 is interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable drape of glaciolacustrine origin, and AU3 as a poorly stratified to stratified mud drift. A strong truncating reflector separates AU2 and AU3. Three lithological units (LUs) were defined in the sediment cores. LU1 consists of glaciofluvial sand and silt gradating into LU2, which consists of glaciolacustrine varves. A sharp contact interpreted as a major unconformity separates LU2 from the overlying LU3 (brackish-water mud). In the basal part of LU3, one debrite (site M0061) or two debrites (site M0062) were recognized. Information yielded from sediment physical properties (magnetic susceptibility, natural gamma ray, dry bulk density), geochemistry (total carbon, total organic carbon, total inorganic carbon and nitrogen), and grain size support the LU division. The depositional succession was formally subdivided into two alloformations: the Utansjö Alloformation and overlying Hemsön Alloformation; the Utansjö Alloformation was further subdivided into two lithostratigraphic formations: the Storfjärden and Åbordsön formations. The Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) formations represent a glacial retreat systems tract, which started at ca. 10.6 kyr BP. Their deposition was mainly controlled by meltwater from the retreating ice margin, glacio-isostatic land uplift and the regressive (glacial) lake level. The Hemsön Alloformation (organic-rich brackish-water mud) represents a period of forced regression, starting possibly at ca. 9.5 kyr BP. At about 7 kyr BP, brackish water reached the study area as a result of the mid-Holocene marine flooding of the Baltic Sea Basin, but the rapid land uplift soon surpassed the associated (Littorina) transgression. Changed near-bottom current patterns, caused by the establishment of a permanent halocline, and the reduced sediment consistency caused by increased organic deposition resulted in a sharp and erosional base of the brackish-water mud. Estuarine processes and salinity stratification at site M0062 started to play a more important role. This study applies a combined allostratigraphic and lithostratigraphic approach over the conventional Baltic Sea stages. This approach makes it more straightforward to study this Baltic Sea deglaciation–postglacial sequence and compare it to other formerly glaciated shallow sea estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexanderson H, Johnsen T, Murray AS (2010) Re-dating the Pilgrimstad Interstadial with OSL: a warmer climate and a smaller ice sheet during the Swedish Middle Weichselian. Boreas 39:367–376

    Article  Google Scholar 

  • Andrén E, Andrén T, Sohlenius G (2000) The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29:233–250

    Article  Google Scholar 

  • Andrén T, Lindeberg G, Andrén E (2002) Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacial varves from the Baltic Sea. Boreas 31:226–238

    Article  Google Scholar 

  • Andrén T, Björck S, Andrén E, Conley D, Zillén L, Anjar J (2011) The development of the Baltic Sea Basin during the last 130 ka. In: Harff J et al (eds) The Baltic Sea Basin, Central and Eastern European Development Studies (CEEDES). doi:10.1007/978-3-642-17220-5_4

  • Andrén T, Jørgensen BB, Cotterill C, Green S, Expedition 347 Scientists (2014) Baltic Sea Basin Paleoenvironment: paleoenvironmental evolution of the Baltic Sea Basin through the last glacial cycle. IODP Prel Rep 347. doi:10.2204/iodp.pr.347.2014

  • Andrén T, Jørgensen BB, Cotterill C, Green S, Expedition 347 Scientists (2015) Baltic Sea paleoenvironment. Proc IODP, Integrated Ocean Drilling Program, vol 347. doi:10.2204/iodp.proc.347.2015

  • Apler A, Nyberg J, Jönsson K, Hedlund K, Heinemo S-Å, Kjellin B (2014) Project Fiberbank: mapping of sediment rich in pulp fiber along the western Norrland coast (in Swedish). Geological Survey of Sweden, Uppsala, SGU Report 2014/16

  • Arnborg L (1958) Lower Ångermanälven River (in Swedish). Publications from the Geographical Institute. University of Uppsala, Uppsala

    Google Scholar 

  • Arnborg L (1959) Lower Ångermanälven River 2 (in Swedish). Publications from the Geographical Institute. University of Uppsala, Uppsala

    Google Scholar 

  • Bendixen C, Jensen JB, Boldreel LO, Clausen OR, Bennike O, Seidenkrantz M-S, Nyberg J, Hubscher C (2016) The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression. Boreas. doi:10.1111/bor.12154

    Google Scholar 

  • Bennike O, Jensen JB, Lemke W, Kuijpers A, Lomholt S (2004) Late- and postglacial history of the Great Belt, Denmark. Boreas 33:18–33

    Article  Google Scholar 

  • Berglund M (2004) Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift centre. Boreas 33:48–60

    Article  Google Scholar 

  • Berglund M (2012) The highest postglacial shore levels and glacio-isostatic uplift pattern in northern Sweden. Geogr Ann Ser A Phys Geogr 94:321–337

    Article  Google Scholar 

  • Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu SY (2005) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat Int 130:111–139

    Article  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat Int 27:19–40

    Article  Google Scholar 

  • Brookfield ME, Martini IP (1999) Facies architecture and sequence stratigraphy in glacially influenced basins: basic problems and water-level/glacier input-point controls (with an example from the Quaternary of Ontario, Canada). Sediment Geol 123:183–197

    Article  Google Scholar 

  • Cato I (1985) The definitive connection of the Swedish geochronological time scale with the present, and the new date of the zero year in Döviken, northern Sweden. Boreas 14:117–122

    Article  Google Scholar 

  • Cato I (1987) On the definitive connection of the Swedish Time Scale with the present. Sveriges Geol Unders Ca 68, 55 pp

  • Cuzzone JK, Clark PU, Carlson AE, Ullman DJ, Rinterknecht VR, Milne GA, Lunkka J-P, Wohlfarth B, Marcott SA, Caffee M (2016) Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth Planet Sci Lett 448:34–41

    Article  Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Article  Google Scholar 

  • Dalrymple RW, Boyd R, Zaitlin BA (eds) (1994) Incised valley systems: origin and sedimentary sequences. SEPM Spec Publ 51, Tulsa, OK

  • Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nov. 8:158–165

  • Expedition 347 Scientists (2014a) Visual core description and core images IODP Hole 347-M0062A. doi:10.1594/PANGAEA.837853

  • Expedition 347 Scientists (2014b) Visual core description and core images IODP Hole 347-M0062B. doi:10.1594/PANGAEA.837854

  • Expedition 347 Scientists (2014c) Visual core description and core images IODP Hole 347-M0062C. doi:10.1594/PANGAEA.837855

  • Expedition 347 Scientists (2014d) Visual core description and core images IODP Hole 347-M0062D. doi:10.1594/PANGAEA.837856

  • Expedition 347 Scientists (2014e) Visual core description and core images IODP Hole 347-M0061A. doi:10.1594/PANGAEA.837850

  • Expedition 347 Scientists (2014f) Visual core description and core images IODP Hole 347-M0061B. doi:10.1594/PANGAEA.837851

  • Expedition 347 Scientists (2014g) Visual core description and core images IODP Hole 347-M0061C. doi:10.1594/PANGAEA.837852

  • Fairbridge RW (1980) The estuary: its definition and geodynamic cycle. In: Olausson E, Cato I (eds) Chemistry and biogeochemistry of estuaries. Wiley, New York, pp 1–36

    Google Scholar 

  • Gibbard PL (1977) Fossil tracks from varved sediments near Lammi, South Finland. Bull Geol Soc Finl 49:53–57

    Google Scholar 

  • Häusler K, Moros M, Wacker L, Hammerschmidt L, Dellwig O, Leipe T, Kotilainen A, Arz H (2016) Mid- to late Holocene environmental separation of the northern and central Baltic Sea basins in response to differential land uplift. Boreas. doi:10.1111/bor.12198

    Google Scholar 

  • Helmens KF, Johansson PW, Räsänen ME, Alexanderson H, Eskola KO (2007) Ice-free intervals at Sokli continuing into marine isotope stage 3 at Sokli in the central area of the Fennoscandian glaciations. Bull Geol Soc Finl 79:17–39

    Google Scholar 

  • Houmark-Nielsen M (2003) Signature and timing of the Kattegat Ice Stream: onset of the last glacial maximum sequence at the southwestern margin of the Scandinavian ice sheet. Boreas 32:227–241

    Article  Google Scholar 

  • Houmark-Nielsen M, Kjær KH (2003) Southwest Scandinavia, 40–15 ka BP: palaeogeography and environmental change. J Quat Sci 18:769–786

    Article  Google Scholar 

  • IODP Scientific Prospectus 347 (2016) IODP Scientific Prospectus 347. doi:10.2204/iodp.sp.347.2012. Accessed 01.06.2016

  • Jensen JB, Bennike O, Lemke W, Kuijpers A (2005) The Storebælt gateway to the Baltic. Bull Geol Soc Den 7:45–48

    Google Scholar 

  • Jokinen SA, Virtasalo JJ, Kotilainen AT, Saarinen T (2015) Varve microfabric record of seasonal sedimentation and bottom flow-modulated mud deposition in the coastal northern Baltic Sea. Mar Geol 366:79–96

    Article  Google Scholar 

  • Kennish MJ (ed) (2016) Encyclopedia of estuaries. Springer, Berlin

    Google Scholar 

  • Kotilainen AT, Hutri KL (2004) Submarine Holocene sedimentary disturbances in the Olkiluoto area of the Gulf of Bothnia, Baltic Sea: a case of postglacial palaeoseismicity. Quat Sci Rev 23:1125–1135

    Article  Google Scholar 

  • Kotilainen AT, Hämäläinen J, Winterhalter B (2002) Reconstructing a continuous holocene composite sedimentary record for the eastern Gotland Deep, Baltic Sea. Boreal Environ Res 7:1–12

    Google Scholar 

  • Larsen NK, Knudsen KL, Krohn CF, Kronborg C, Murray AS, Nielsen OB (2009) Late Quaternary ice sheet, lake and sea history of southwest Scandinavia – a synthesis. Boreas 38:732–761

    Article  Google Scholar 

  • Lidén R (1913) Geochronological studies on the Fini-glacial stage in Ångermanland (in Swedish). Sver Geol Unders Ca 9:1–39

    Google Scholar 

  • Lidén R (1938) The course and chronology of the late quaternary shore displacement in Ångermanland (in Swedish). Geol Fören Stockh Förh 60:397–404

    Article  Google Scholar 

  • Lindén M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22

    Article  Google Scholar 

  • Lundqvist J, Wohlfarth B (2001) Timing and east-west correlation of south Swedish ice marginal lines during the Late Weichselian. Quat Sci Rev 20:1127–1148

    Article  Google Scholar 

  • Lunkka JP, Saarnisto M, Gey V, Demidov I, Kiselova V (2001) The extent and age of the Last Glacial Maximum in the south-eastern sector of the Scandinavian ice sheet. Glob Planet Chang 31:407–442

    Article  Google Scholar 

  • Lunkka JP, Murray A, Korpela K (2008) Weichselian sediment succession at Ruunaa, Finland, indicating a Mid-Weichselian ice-free interval in eastern Fennoscandia. Boreas 37:234–244

    Article  Google Scholar 

  • Mangerud J, Jansen E, Landvik J (1996) Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Glob Planet Chang 12:11–26

    Article  Google Scholar 

  • Möller P, Murray AS (2016) Drumlinised glaciofluvial and glaciolacustrine sediments on the Småland peneplain, South Sweden – new information on the growth and decay history of the Fennoscandian Ice Sheets during MIS 3. Quat Sci Rev 122:1–29. doi:10.1016/j.quascirev.2015.04.025

    Article  Google Scholar 

  • Möller P, Anjar J, Murray AS (2013) An OSL-dated sediment sequence at Idre, west-central Sweden, indicating ice-free conditions in MIS 3. Boreas 42:25–42

    Article  Google Scholar 

  • NACSN (2005) North American stratigraphic code. North American Commission on Stratigraphic Nomenclature. AAPG Bull 89:1547–1591

    Article  Google Scholar 

  • Obrochta SP, Crowley TJ, Channell JET, Hodell DA, Baker PA, Seki A, Yokoyama Y (2014) Climate variability and ice-sheet dynamics during the last three glaciations. Earth Planet Sci Lett 406:198–212. doi:10.1016/j.epsl.2014.09.004

    Article  Google Scholar 

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow marine to marginal marine systems: Ben Nevis & Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, St. John’s, NFLD, GAC Short Course 15

  • Perillo G (ed) (1995) Geomorphology and sedimentology of estuaries, 1st edn. Developments in Sedimentology, vol 53. Elsevier, Amsterdam

  • Powell RD, Cooper JM (2002) A glacial sequence stratigraphic model for temperate, glaciated continental shelves. In: Dowdeswell JA, Ó Cofaigh C (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geol Soc Lond Spec Publ 203:215–244

  • Räsänen ME, Auri JM, Huitti JV, Klap AK, Virtasalo JJ (2009) A shift from lithostratigraphic to allostratigraphic classification of Quaternary glacial deposits. GSA Today 19(2):4–11

    Article  Google Scholar 

  • Räsänen ME, Huitti JV, Bhattaraia S, Harvey J, Huttunen S (2015) The SE sector of the Middle Weichselian Eurasian ice sheet was much smaller than assumed. Quat Sci Rev 122:131–141

    Article  Google Scholar 

  • Reinholdsson M, Snowball I, Zillén L, Lenz C, Conley DJ (2013) Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet Sci Lett 366:137–150

    Article  Google Scholar 

  • Rößler D, Moros M, Lemke W (2011) The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40:231–241

    Article  Google Scholar 

  • Salonen VP, Kaakinen A, Kultti S, Miettinen A, Eskola KO, Lunkka JP (2007) Middle Weichselian glacial event in the central part of the Scandinavian ice sheet recorded in the Hitura pit, Ostrobothnia, Finland. Boreas 37:38–54

    Article  Google Scholar 

  • Sander M, Bengtsson L, Holmquist B, Wohlfarth B, Cato I (2002) The relationship between annual varve thickness and maximum annual discharge (1909–1971). J Hydrol 263:23–35

    Article  Google Scholar 

  • SGU (2016) Swedish Geological Survey (SGU) database. http://apps.sgu.se/kartgenerator/maporder_en.html. Accessed 20.06.2016

  • SMHI (2016) Swedish Meteorological and Hydrological Institute (SMHI) database. http://opendata-catalog.smhi.se/explore/. Accessed 20.06.2016

  • Sohlenius G, Emeis KC, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the fresh–brackish water transition in the Baltic Sea. Mar Geol 177:221–242

    Article  Google Scholar 

  • Tuovinen N, Virtasalo JJ, Kotilainen A (2008) Holocene diatom stratigraphy in the Archipelago Sea, northern Baltic Sea. J Paleolimnol 40:793–807

    Article  Google Scholar 

  • Uchman A, Kumpulainen RA (2011) Trace fossils in quaternary glacial varved clays near Uppsala, Sweden. GFF 133:135–140

    Article  Google Scholar 

  • Ukkonen P, Lunkka J, Jungner H, Donner J (1999) New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fennoscandia during the Middle Weichselian. J Quat Sci 14(7):711–714

    Article  Google Scholar 

  • Väliranta M, Salonen JS, Heikkilä M, Amon L, Helmens K, Klimaschewski A, Kuhry P, Kultti S, Poska A, Shala S, Veski S, Birks HH (2015) Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat Commun 6:6809. doi:10.1038/ncomms7809

  • Virtasalo JJ, Kotilainen AT, Räsänen ME (2005) Holocene stratigraphy of the Archipelago Sea, northern Baltic Sea: the definitions and descriptions of the Dragsfjärd, Korppoo and Nauvo Alloformations. Baltica 18:83–97

    Google Scholar 

  • Virtasalo JJ, Kotilainen AT, Räsänen ME, Ojala AEK (2007) Late-glacial and postglacial deposition in a large, low relief, epicontinental basin: the northern Baltic Sea. Sedimentology 54:1323–1344

    Article  Google Scholar 

  • Virtasalo JJ, Löwemark L, Papunen H, Kotilainen AT, Whitehouse MJ (2010) Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. J Geol Soc Lond 167:1185–1198

    Article  Google Scholar 

  • Virtasalo JJ, Ryabchuk D, Kotilainen A, Zhamoida V, Grigoriev A, Sivkov V, Dorokhova E (2014a) Middle Holocene to present sedimentary environment in the easternmost Gulf of Finland (Baltic Sea) and the birth of the Neva River. Mar Geol 350:84–96

    Article  Google Scholar 

  • Virtasalo JJ, Hämäläinen J, Kotilainen AT (2014b) Toward a standard stratigraphical classification practice for the Baltic Sea sediments: the CUAL approach. Boreas 43:924–938. doi:10.1111/bor.12076

    Article  Google Scholar 

  • Virtasalo JJ, Endler M, Moros M, Jokinen SA, Hämäläinen J, Kotilainen AT (2016) Base of brackish-water mud as key regional stratigraphic marker of mid-Holocene marine flooding of the Baltic Sea Basin. Geo-Mar Lett 36:445–456. doi:10.1007/s00367-016-0464-4

    Article  Google Scholar 

  • Widerlund A, Andersson PS (2006) Strontium isotopic composition of modern and Holocene mollusc shells as a palaeosalinity indicator for the Baltic Sea. Chem Geol 232:54–66

    Article  Google Scholar 

  • Widerlund A, Andersson PS (2011) Late Holocene freshening of the Baltic Sea derived from high-resolution strontium isotope analyses of mollusk shells. Geology 39:187–190

    Article  Google Scholar 

  • Wohlfarth B, Björck S, Cato I, Possnert G (1997) A new middle Holocene varve diagram from river Ångermanälven, Northern Sweden: indications for a possible error in the Holocene varve chronology. Boreas 4:347–354

    Google Scholar 

  • Wohlfarth B, Holmquist B, Cato I, Lindersson H (1998) The climatic significance of the clastic varves in Ångermanälven River Estuary, northern Sweden, AD 1860 to 1950. The Holocene 8:521–534

    Article  Google Scholar 

Download references

Acknowledgments

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP), and the authors wish to thank the IODP Expedition 347 scientific party and the Bremen Core Repository for fruitful cooperation. O.H. and A.K. acknowledge Academy of Finland funding for the CISU project (decision number 281143). Constructive comments from the reviewers P. Gibbard and M. Johnson as well as the editors helped greatly to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hyttinen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyttinen, O., Kotilainen, A.T., Virtasalo, J.J. et al. Holocene stratigraphy of the Ångermanälven River estuary, Bothnian Sea. Geo-Mar Lett 37, 273–288 (2017). https://doi.org/10.1007/s00367-016-0490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0490-2

Keywords

Navigation