Skip to main content

Advertisement

Log in

On the variability of near-bed floc size due to complex interactions between turbulence, SSC, settling velocity, effective density and the fractal dimension of flocs

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Interactions between turbulence, suspended sediment concentration (SSC), settling velocity, effective density, fractal dimension, and floc size were studied on the tide-dominated, muddy coastal shelf of the southwestern Yellow Sea, China. The measurements were carried out in July 2013 at two sites located in water depths of 21.2 and 22.1 m. Negative correlations were observed between shear rate, SSC, effective density, and mean floc size, which supports the results of previous numerical, experimental, and field studies. A significant positive correlation was observed between near-bed SSC and shear rate, an indication that SSC variations are controlled by turbulence and re-suspension. In addition, significant linear relationships were found between settling velocity and other parameters (floc size, turbulence, SSC, effective density, and fractal dimension) at the two sites, indicating that the controlling factors on settling velocity are spatially variable. Principal component analysis was applied to determine the relative importance of turbulence, flocculation ability, and SSC as controls on floc size in situ. The relative contributions of turbulence, flocculation ability, and SSC to floc size (at both sites) were ~33.0%, 30.3%, and 29.7%, respectively, this being a new field-based quantitative analysis of the controls on floc size. The findings demonstrate that, in nature, flocculation ability affects floc size to the same degree as turbulence and SSC. Therefore, predictions of floc size in coastal marine environments require constraints not only on turbulence and SSC, but also on flocculation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen TJ, Fredsoe J, Pejrup M (2007) In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV). Estuar Coast Shelf Sci 75(3):327–336. doi:10.1016/j.ecss.2007.04.039

    Article  Google Scholar 

  • Argaman Y, Kaufman WJ (1970) Turbulence and flocculation. J Sanit Eng Div ASCE 96(2):223–241

    Google Scholar 

  • Beaugrand G (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60(2):245–262. doi:10.1016/j.pocean.2004.02.018

    Article  Google Scholar 

  • Bian C, Mao X, Jiang W, Gu Y (2015) ADV-based estimates of sediment settling velocity on the shelf of the Yellow and East China seas: evidence of marked seasonal and intra-tidal variations. Geo-Mar Lett 35:53–60. doi:10.1007/s00367-014-0386-y

    Article  Google Scholar 

  • Braithwaite KM, Bowers DG, Nimmo Smith WAM, Graham GW (2012) Controls on floc growth in an energetic tidal channel. J Geophys Res 117:C02024. doi:10.1029/2011JC007094

    Article  Google Scholar 

  • Burban PY, Lick W, Lick J (1989) The flocculation of fine-grained sediments in estuarine waters. J Geophys Res 94(C6):8323–8330

    Article  Google Scholar 

  • Cao LH, Hou ZM, Zhuang ZY, Zhai K (2010) Submarine bedforms and their origin in the southeast of Yangtze Shoal (in Chinese with English abstract). Mar Geol Lett 26(9):1–5

    Google Scholar 

  • Cartwright GM, Friedrichs CT, Smith SJ (2013) A test of the ADV-based Reynolds flux method for in situ estimation of sediment settling velocity in a muddy estuary. Geo-Mar Lett 33:477–484. doi:10.1007/s00367-013-0340-4

    Article  Google Scholar 

  • Chanson H, Trevethan M, Aoki SI (2008) Acoustic Doppler velocimetry (ADV) in small estuary: field experience and signal post-processing. Flow Meas Instrum 19(5):307–313. doi:10.1016/j.flowmeasinst.2008.03.003

    Article  Google Scholar 

  • Couturier MNL, Grochowski NT, Heathershaw A, Oikonomou E, Collins MB (2000) Turbulent and macro-turbulent structures developed in the benthic boundary layer downstream of topographic features. Estuar Coast Shelf Sci 50(6):817–833. doi:10.1006/ecss.1999.0602

    Article  Google Scholar 

  • Cuthbertson AJS, Dong P, Davies PA (2010) Non-equilibrium flocculation characteristics of fine-grained sediments in grid-generated turbulent flow. Coast Eng 57(4):447–460. doi:10.1016/j.coastaleng.2009.11.011

    Article  Google Scholar 

  • Dai ZJ, Liu JT, Fu G, Xie HL (2013) A thirteen-year record of bathymetric changes in the North Passage, Changjiang (Yangtze) estuary. Geomorphology 187:101–107. doi:10.1016/j.geomorph.2013.01.004

    Article  Google Scholar 

  • Dyer KR (1986) Coastal and estuarine sediment dynamics. Wiley, Chichester

    Google Scholar 

  • Dyer KR (1989) Sediment processes in estuaries: future research requirements. J Geophys Res 94(C10):14327–14339

    Article  Google Scholar 

  • Dyer KR, Manning AJ (1999) Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. J Sea Res 41(1):87–95. doi:10.1016/S1385-1101(98)00036-7

    Article  Google Scholar 

  • Edelvang K, Austen I (1997) The temporal variation of flocs and fecal pellets in a tidal channel. Estuar Coast Shelf Sci 44(3):361–367. doi:10.1006/ecss.1996.0149

    Article  Google Scholar 

  • Einstein HA, Krone RB (1962) Experiments to determine modes of cohesive sediment transport in salt water. J Geophys Res 67(4):1451–1461

    Article  Google Scholar 

  • Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Neth J Sea Res 20(2):183–199. doi:10.1016/0077-7579(86)90041-4

    Article  Google Scholar 

  • Felix D, Albayrak I, Boes RM (2013) Laboratory investigation on measuring suspended sediment by portable laser diffractometer (LISST) focusing on particle shape. Geo-Mar Lett 33:485–498. doi:10.1007/s00367-013-0343-1

    Article  Google Scholar 

  • Fennessy MJ, Dyer KR, Huntley DA (1994) Inssev: an instrument to measure the size and settling velocity of flocs in situ. Mar Geol 117(1):107–117. doi:10.1016/0025-3227(94)90009-4

    Article  Google Scholar 

  • Flesch JC, Spicer PT, Pratsinis SE (1999) Laminar and turbulent shear-induced flocculation of fractal aggregates. Am Inst Chem Eng 45(5):1114–1124. doi:10.1002/aic.690450518

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27(1):3–26

  • Fugate DC, Friedrichs CT (2002) Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST. Cont Shelf Res 22(11):1867–1886. doi:10.1016/S0278-4343(02)00043-2

    Article  Google Scholar 

  • Hill PS, Voulgaris G, Trowbridge JH (2001) Controls on floc size in a continental shelf bottom boundary layer. J Geophys Res 106(C5):9543–9549. doi:10.1029/2000JC900102

    Article  Google Scholar 

  • Hill PS, Newgard JP, Law BA, Milligan TG (2013) Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part II: observations of suspended particle size in a secondary channel and adjacent flat. Cont Shelf Res 60:S145–S156. doi:10.1016/j.csr.2012.06.006

    Article  Google Scholar 

  • Hunter KA, Liss PS (1982) Organic matter and the surface charge of suspended particles in estuarine waters. Limnol Oceanogr 27(2):322–335. doi:10.4319/lo.1982.27.2.0322

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Jourdin F, Tessier C, Le Hir P, Verney R, Lunven M, Loyer S, Lusven A, Filipot J-F, Lepesqueur J (2014) Dual-frequency ADCPs measuring turbidity. Geo-Mar Lett 34:381–397. doi:10.1007/s00367-014-0366-2

    Google Scholar 

  • Kannel PR, Lee S, Kanel SR, Khan SP (2007) Chemometric application in classification and assessment of monitoring locations of an urban river system. Anal Chim Acta 582(2):390–399. doi:10.1016/j.aca.2006.09.006

    Article  Google Scholar 

  • Karami J, Alimohammadi A, Modabberi S (2012) Analysis of the spatio-temporal patterns of water pollution and source contribution using the MODIS sensor products and multivariate statistical techniques. IEEE J Sel Top Appl Earth Obs Remote Sens 5(4):1243–1255. doi:10.1109/JSTARS.2012.2187273

    Article  Google Scholar 

  • Keyvani A, Strom K (2014) Influence of cycles of high and low turbulent shear on the growth rate and equilibrium size of mud flocs. Mar Geol 354:1–14. doi:10.1016/j.margeo.2014.04.010

    Article  Google Scholar 

  • Khelifa A, Hill PS (2006) Models for effective density and settling velocity of flocs. J Hydraul Res 44(3):390–401. doi:10.1080/00221686.2006.9521690

    Article  Google Scholar 

  • Kim SC, Friedrichs CT, Maa JPY, Wright LD (2000) Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J Hydraul Eng 126(6):399–406. doi:10.1061/(ASCE)0733-9429(2000)126:6(399)

    Article  Google Scholar 

  • Klinck JM (1985) EOF analysis of central Drake Passage currents from DRAKE 79. J Phys Oceanogr 15:288–298. doi:10.1175/1520-0485(1985)015<0288:EAOCDP>2.0.CO;2

    Article  Google Scholar 

  • Kranenburg C (1994) The fractal structure of cohesive sediment aggregates. Estuar Coast Shelf Sci 39(5):451–460. doi:10.1006/ecss.1994.1075

    Article  Google Scholar 

  • Kumar RG, Strom KB, Keyvani A (2010) Floc properties and settling velocity of San Jacinto estuary mud under variable shear and salinity conditions. Cont Shelf Res 30(20):2067–2081. doi:10.1016/j.csr.2010.10.006

    Article  Google Scholar 

  • Lan AJ, Xiong KN, An YL (2001) Analysis on driving factors of Karst Rock—desertification: with a special reference to Guizhou Province (in Chinese with English abstract). Bull Soil Water Conserv 21(6):19–23

    Google Scholar 

  • Lefebvre J-P, Ouillon S, Vinh VD, Arfi R, Panché J-Y, Mari X, Thuoc CV, Torréton J-P (2012) Seasonal variability of cohesive sediment aggregation in the Bach Dang–Cam Estuary, Haiphong (Vietnam). Geo-Mar Lett 32:103–121. doi:10.1007/s00367-011-0273-8

    Article  Google Scholar 

  • Li CX, Zhang JQ, Fan DD, Deng B (2001) Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Mar Geol 173(1):97–120. doi:10.1016/S0025-3227(00)00169-9

    Article  Google Scholar 

  • Lick W, Lick J (1988) Aggregation and disaggregation of fine-grained lake sediments. J Great Lakes Res 14(4):514–523. doi:10.1016/S0380-1330(88)71583-X

    Article  Google Scholar 

  • Lick W, Huang H, Jepsen R (1993) Flocculation of fine-grained sediments due to differential settling. J Geophys Res 98(C6):10279–10288. doi:10.1029/93JC00519

    Article  Google Scholar 

  • Liss SN, Droppo IG, Leppard GG, Milligan TG (2004) Flocculation in natural and engineered environmental systems. CRC Press, Boca Raton

    Book  Google Scholar 

  • Liu ZX (1996) Re-recognition of formation of Yangtze Shoal in the East China Sea (in Chinese). Acta Oceanol Sin 18(2):85–92

    Google Scholar 

  • Liu ZX (1997) Yangtze Shoal—a modern tidal sand sheet in the northwestern part of the East China Sea. Mar Geol 137(3):321–330. doi:10.1016/S0025-3227(96)00026-6

    Article  Google Scholar 

  • Long HY, Zhuang ZY, Liu SF, Lv HQ, Ye YC, Du WB (2007) Activity magnitude of the small-medium subaqueous dunes in the Yangtze Shoal (in Chinese with English abstract). Mar Geol Quat Geol 27(6):17–23

    Google Scholar 

  • Lu YZ, Wu JX, Liu H (2012) An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer (in Chinese with English abstract). Acta Oceanol Sin 34(5):39–49

    Google Scholar 

  • Maerz J, Verney R, Wirtz K, Feudel U (2011) Modeling flocculation processes: intercomparison of a size class-based model and a distribution-based model. Cont Shelf Res 31(10):S84–S93. doi:10.1016/j.csr.2010.05.011

    Article  Google Scholar 

  • Maggi F (2007) Variable fractal dimension: a major control for floc structure and flocculation kinematics of suspended cohesive sediment. J Geophys Res 112:C07012. doi:10.1029/2006JC003951

    Article  Google Scholar 

  • Maggi F, Mietta F, Winterwerp JC (2007) Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J Hydrol 343(1):43–55. doi:10.1016/j.jhydrol.2007.05.035

    Article  Google Scholar 

  • Manning AJ, Dyer KR (1999) A laboratory examination of floc characteristics with regard to turbulent shearing. Mar Geol 160(1):147–170. doi:10.1016/S0025-3227(99)00013-4

    Article  Google Scholar 

  • Manning AJ, Schoellhamer DH (2013) Factors controlling floc settling velocity along a longitudinal estuarine transect. Mar Geol 345:266–280. doi:10.1016/j.margeo.2013.06.018

    Article  Google Scholar 

  • McManus JP, Prandle D (1997) Development of a model to reproduce observed suspended sediment distributions in the southern North Sea using Principal Component Analysis and Multiple Linear Regression. Cont Shelf Res 17(7):761–778. doi:10.1016/S0278-4343(96)00057-X

    Article  Google Scholar 

  • Medina R, Losada MA, Losada IJ, Vidal C (1994) Temporal and spatial relationship between sediment grain size and beach profile. Mar Geol 118(3):195–206. doi:10.1016/0025-3227(94)90083-3

    Article  Google Scholar 

  • Meglen RR (1992) Examining large databases: a chemometric approach using principal component analysis. Mar Chem 39(1):217–237. doi:10.1016/0304-4203(92)90103-H

    Article  Google Scholar 

  • Mehta AJ (2014) An introduction to hydraulics of fine sediment transport. World Scientific, Singapore

    Google Scholar 

  • Mehta AJ, Hayter EJ, Parker WR, Krone RB, Teeter AM (1989) Cohesive sediment transport. I: process description. J Hydraul Eng 115(8):1076–1093. doi:10.1061/(ASCE)0733-9429(1989)115:8(1076)

    Article  Google Scholar 

  • Mietta F, Chassagne C, Manning AJ, Winterwerp JC (2009) Influence of shear rate, organic matter content, pH and salinity on mud flocculation. Ocean Dyn 59(5):751–763. doi:10.1007/s10236-009-0231-4

    Article  Google Scholar 

  • Mikkelsen OA, Pejrup M (2001) The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar Lett 20:187–195. doi:10.1007/s003670100064

    Article  Google Scholar 

  • Mikkelsen OA, Hill PS, Milligan TG (2007) Seasonal and spatial variation of floc size, settling velocity, and density on the inner Adriatic Shelf (Italy). Cont Shelf Res 27(3):417–430. doi:10.1016/j.csr.2006.11.004

    Article  Google Scholar 

  • Milligan TG, Hill PS (1998) A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximal floc size and settling behaviour. J Sea Res 39(3):227–241. doi:10.1016/S1385-1101(97)00062-2

    Article  Google Scholar 

  • Milliman JD, Shen HT, Yang ZS, Mead RH (1985) Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont Shelf Res 4(1):37–45. doi:10.1016/0278-4343(85)90020-2

    Article  Google Scholar 

  • Pandya JD, Spielman LA (1982) Floc breakage in agitated suspensions: theory and data processing strategy. J Colloid Interface Sci 90(2):517–531. doi:10.1016/0021-9797(82)90317-4

    Article  Google Scholar 

  • Parker DS, Kaufman WJ, Jenkins D (1972) Floc break-up in turbulent flocculation processes. J Sanit Eng Div 98(1):79–99

    Google Scholar 

  • Pope ND, Widdows J, Brinsley MD (2006) Estimation of bed shear stress using the turbulent kinetic energy approach—a comparison of annular flume and field data. Cont Shelf Res 26(8):959–970. doi:10.1016/j.csr.2006.02.010

    Article  Google Scholar 

  • Razaz M, Kawanisi K, Nistor I (2015) Tide-driven controls on maximum near-bed floc size in a tidal estuary. J Hydro Environ Res 9(3):465–471. doi:10.1016/j.jher.2014.04.001

    Article  Google Scholar 

  • Ren ME (1986) Comprehensive investigation of the coastal zone and tidal land resources of Jiangsu Province (in Chinese). Ocean Press, Beijing

    Google Scholar 

  • Safak I, Allison MA, Sheremet A (2013) Floc variability under changing turbulent stresses and sediment availability on a wave energetic muddy shelf. Cont Shelf Res 53:1–10. doi:10.1016/j.csr.2012.11.015

    Article  Google Scholar 

  • Sahin C (2014) Investigation of the variability of floc sizes on the Louisiana Shelf using acoustic estimates of cohesive sediment properties. Mar Geol 353:55–64. doi:10.1016/j.margeo.2014.03.022

    Article  Google Scholar 

  • Salehi M, Strom K (2012) Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Cont Shelf Res 47:78–92. doi:10.1016/j.csr.2012.07.004

    Article  Google Scholar 

  • Shi Z (2010) Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: a personal perspective. Geomorphology 121(3):133–151. doi:10.1016/j.geomorph.2010.04.021

    Article  Google Scholar 

  • Shi Z, Zhou HJ (2004) Controls on effective settling velocities of mud flocs in the Changjiang Estuary, China. Hydrol Process 18(15):2877–2892. doi:10.1002/hyp.1500

    Article  Google Scholar 

  • Shi Z, Zhou HJ, Eittreim SL, Winterwerp JC (2003) Settling velocities of fine suspended particles in the Changjiang Estuary, China. J Asian Earth Sci 22(3):245–251. doi:10.1016/S1367-9120(03)00067-1

    Article  Google Scholar 

  • Shi Z, Zhang SY, Hamilton LJ (2006) Bottom fine sediment boundary layer and transport processes at the mouth of the Changjiang Estuary, China. J Hydrol 327(1):276–288. doi:10.1016/j.jhydrol.2005.11.039

    Article  Google Scholar 

  • Shi BW, Yang SL, Wang YP, Bouma TJ, Zhu Q (2012) Relating accretion and erosion at an exposed tidal wetland to the bottom shear stress of combined current–wave action. Geomorphology 138(1):380–389. doi:10.1016/j.geomorph.2011.10.004

    Article  Google Scholar 

  • Shi BW, Yang SL, Wang YP, Yu Q, Li ML (2014) Intratidal erosion and deposition rates inferred from field observations of hydrodynamic and sedimentary processes: a case study of a mudflat–saltmarsh transition at the Yangtze delta front. Cont Shelf Res 90:109–116. doi:10.1016/j.csr.2014.01.019

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Anal Chim Acta 538(1):355–374. doi:10.1016/j.aca.2005.02.006

    Article  Google Scholar 

  • Son M, Hsu TJ (2009) The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment. Water Res 43(14):3582–3592. doi:10.1016/j.watres.2009.05.016

    Article  Google Scholar 

  • Son M, Hsu TJ (2011) The effects of flocculation and bed erodibility on modeling cohesive sediment resuspension. J Geophys Res 116:C03021. doi:10.1029/2010JC006352

    Google Scholar 

  • Soulsby RL (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford, London

    Google Scholar 

  • Soulsby RL, Humphery JD (1990) Field observations of wave-current interaction at the sea bed. In: Torum A (ed) Water wave kinematics. Springer, Dordrecht, pp 413–428

    Chapter  Google Scholar 

  • Spicer PT, Pratsinis SE (1996) Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Water Res 30(5):1049–1056. doi:10.1016/0043-1354(95)00253-7

    Article  Google Scholar 

  • Sternberg RW, Berhane I, Ogston AS (1999) Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Mar Geol 154(1):43–53. doi:10.1016/S0025-3227(98)00102-9

    Article  Google Scholar 

  • Thomas DN, Judd SJ, Fawcett N (1999) Flocculation modelling: a review. Water Res 33(7):1579–1592. doi:10.1016/S0043-1354(98)00392-3

    Article  Google Scholar 

  • Tsai CH, Iacobellis S, Lick W (1987) Flocculation of fine-grained lake sediments due to a uniform shear stress. J Great Lakes Res 13(2):135–146. doi:10.1016/S0380-1330(87)71637-2

    Article  Google Scholar 

  • van Leussen W (1994) Estuarine macroflocs and their role in fine-grained sediment transport. PhD Thesis, University of Utrecht

  • van Leussen W (1999) The variability of settling velocities of suspended fine-grained sediment in the Ems estuary. J Sea Res 41(1):109–118. doi:10.1016/S1385-1101(98)00046-X

    Article  Google Scholar 

  • Verney R, Lafite R, Brun-Cottan JC, Le Hir P (2011) Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling. Cont Shelf Res 31(10):S64–S83. doi:10.1016/j.csr.2010.02.005

    Article  Google Scholar 

  • Wang XY, Ke XK (1997) Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sediment Geol 112(1):105–122. doi:10.1016/S0037-0738(97)00026-2

    Article  Google Scholar 

  • Wang Y, Zhang YZ, Zou XQ, Zhu DK, Piper D (2012a) The sand ridge field of the South Yellow Sea: origin by river–sea interaction. Mar Geol 291:132–146. doi:10.1016/j.margeo.2011.01.001

    Article  Google Scholar 

  • Wang YP, Gao S, Jia JJ, Thompson CEL, Gao JH, Yang Y (2012b) Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar Geol 291:147–161. doi:10.1016/j.margeo.2011.01.004

    Article  Google Scholar 

  • Wang YP, Voulgaris G, Li Y, Yang Y, Gao JH, Chen J, Gao S (2013) Sediment resuspension, flocculation, and settling in a macrotidal estuary. J Geophys Res Oceans 118(10):5591–5608. doi:10.1002/jgrc.20340

    Article  Google Scholar 

  • Wilcock PR (1996) Estimating local bed shear stress from velocity observations. Water Resour Res 32(11):3361–3366. doi:10.1029/96WR02277

    Article  Google Scholar 

  • Winterwerp JC (1998) A simple model for turbulence induced flocculation of cohesive sediment. J Hydraul Res 36(3):309–326. doi:10.1080/00221689809498621

    Article  Google Scholar 

  • Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22(9):1339–1360. doi:10.1016/S0278-4343(02)00010-9

    Article  Google Scholar 

  • Winterwerp JC, van Kesteren WGM (2004) Introduction to the physics of cohesive sediment in the marine environment. Elsevier, Amsterdam

    Google Scholar 

  • Xing F, Wang YP, Wang HV (2012) Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar Geol 291:192–210. doi:10.1016/j.margeo.2011.06.006

    Article  Google Scholar 

  • Yang SL, Li P, Gao A, Zhang J, Zhang WX, Li M (2007) Cyclical variability of suspended sediment concentration over a low-energy tidal flat in Jiaozhou Bay, China: effect of shoaling on wave impact. Geo-Mar Lett 27:345–353. doi:10.1007/s00367-007-0058-2

    Article  Google Scholar 

  • Yuan Y, Wei H, Zhao L, Jiang WS (2008) Observations of sediment resuspension and settling off the mouth of Jiaozhou Bay, Yellow Sea. Cont Shelf Res 28(19):2630–2643. doi:10.1016/j.csr.2008.08.005

    Article  Google Scholar 

  • Zhang JJ, Li XY (2003) Modeling particle-size distribution dynamics in a flocculation system. Am Inst Chem Eng 49(7):1870–1882. doi:10.1002/aic.690490723

    Article  Google Scholar 

  • Zhu YH, Lu JY, Liao HZ, Wang JS, Fan BL, Yao SM (2008) Research on cohesive sediment erosion by flow: an overview. Sci China Ser E Technol Sci 51(11):2001–2012. doi:10.1007/s11431-008-0232-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jian Hua Gao, Yang Yang, Jia Xue Wu, Yun Ling Liu, Ning Wang, Zhuo Chen Han, Can Xu, Ming Liang Li, Jing Dong Chen, and Run Qi Liu who participated in the field observations. Financial support was provided by the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (MRE201201, 201211086-09), the Major State Basic Research Development Program (2013CB956502), the Natural Science Foundation of China (No. 41376044), and the PAPD of Jiangsu Higher Education Institutions. Also gratefully acknowledged are constructive assessments by two anonymous reviewers on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Ping Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Y.P., Li, C. et al. On the variability of near-bed floc size due to complex interactions between turbulence, SSC, settling velocity, effective density and the fractal dimension of flocs. Geo-Mar Lett 36, 135–149 (2016). https://doi.org/10.1007/s00367-016-0434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0434-x

Keywords

Navigation