Skip to main content
Log in

Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Honeycomb structures are one type of structure that has the geometry of a honeycomb to allow the minimization of the amount of used material to reach minimal material cost and minimal weight. In this regard, this article deals with the frequency analysis of imperfect honeycomb core sandwich disk with multi-scale hybrid nanocomposite (MHC) face sheets. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin–Tsai model are engaged to provide the effective material constant of the composite layers. By employing Hamilton’s principle, the governing equations of the structure are derived and solved with the aid of the generalized differential quadrature method. Afterward, a parametric study is carried out to investigate the effects of the thickness to length ratio of the honeycomb core, honeycomb core thickness to inner radius ratio, value fraction of carbon fibers, radius ration of the disk, the angle of honeycomb network, the weight fraction of CNTs, and tensile and compressive in-plane force on the frequency of the sandwich disk with honeycomb core and MHC. The results show that the critical fiber angle is \(\theta_{{\text{f}}} /\pi =\) 0.5 for C–C and C–S boundary conditions. Another consequence is that when the structure is fixed with S–S boundary conditions, for \(p =\) 500 and \(p = 1000\), as well as the critical dimensionless angle for fibers is 0.5, there are two more range for critical fiber angle in which they are \(0.275 \le \theta_{{\text{f}}} /\pi \le 0.375\) and \(0.23 \le \theta_{{\text{f}}} /\pi \le 0.39\), respectively. Additionally, the range of the critical dimensionless angle for fibers increases by increasing the applied load. Some new results related to dynamic behavior of an MHC are also presented, which can serve as benchmark solutions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

h, R i, and R o :

Thickness, the inner and outer radius of the disk, respectively

CNTs:

Carbon-nanotubes

F and NCM:

Indicates fiber and nanocomposite matrix, respectively

\(\rho ,\,E,\,\nu \, {\rm {and}} \,G\) :

Illustrates the density, Young’s module, Poisson’s ratio, and shear parameter, respectively

V NCM, V F :

Volume fractions of nanocomposite matrix and fiber, respectively

l CNT, t CNT, d CNT, E CNT and V CNT :

Indicates the length, thickness, diameter, Young’s module, and volume fraction of carbon nanotubes, respectively

\({V}_{\mathrm{CNT}}^{*}\), W CNT :

Effective volume fraction and weight fraction of the CNTs, respectively

Nt, V CNT :

Layer number and volume fraction of CNTs

\(E_{1}^{*}\) and \(E_{2}^{*}\) :

Represents Young modulus in R and \(\theta\) directions, respectively

\(\nu_{12}^{*}\) and \(\nu_{21}^{*}\) :

Represents Poisson’s ratio in R and \(\theta\) directions, respectively

\(G_{12}^{*}\) :

Represent in-plane shear modulus

\(E_{S}\) and \(\rho_{S}\) :

Represent Young modulus and mass density of base material which is aluminum for honeycomb core, respectively

t m, h H, l m, and θ h :

Indicates the cell wall thickness, the sides of the hexagonal cell, and angle of honeycomb core, respectively

U, V, W :

Displacement fields of a disk

u, v, w, u 1, and v 1 :

Indicates the displacements of the mid-surface of the disk

\(\varepsilon_{RR}\) and \(\varepsilon_{\theta \theta }\) :

Indicates the corresponding normal strains in \(R\) and θ directions, respectively

\(\gamma_{RZ} ,\,\gamma_{R\theta } \, {\rm {and}} \,\gamma_{\theta Z}\) :

Represents the shear strain in the RZ, R\(\theta\) and \(\theta\)Z plane

U *, T *, and W * :

Represents corresponding strain energy of the system, kinetic energy of the system, and the work is done, respectively

\({Q}_{ij}\) and \({\stackrel{-}{Q}}_{ij}\) :

Stiffness elements and stiffness elements that relate to orientation angle and the orientation angle, respectively

θ :

Represents the lamination angle with respect to the disk R axis

N r and N θ :

Represent, the number of grid points along the radial and circumferential directions, respectively

d, b, and \(\delta\) :

Indicates d as a subscript stand for the domain grid-points, b as subscript stands for boundary grid-points and the displacement vector, respectively

F ij and K ij :

Components of force and stiffness matrices, respectively

F ij * and K ij * :

Components of force and stiffness matrices in the GDQ method, respectively

ω n and \({\stackrel{-}{\omega }}_{\mathrm{n}}\) :

Represent dimensional and non-dimensional of natural frequency, respectively

References

  1. Al-Furjan MSH, Habibi M, Dw J, Sadeghi S, Safarpour H, Tounsi A, Chen G (2020) A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. https://doi.org/10.1007/s00366-020-01130-8

    Article  Google Scholar 

  2. Chen S, Wang G, Zuo S, Yang C (2019) Experimental investigation on microstructure and permeability of thermally treated Beishan granite. J Test Eval 49(2). https://doi.org/10.1520/JTE20180879

  3. Ye X, Wang S, Zhang S, Xiao X, Xu F (2020) The compaction effect on the performance of a compaction-grouted soil nail in sand. Acta Geotechnica 1–13. https://doi.org/10.1007/s11440-020-01017-4

  4. Mukhopadhyay T, Adhikari S (2016) Free-vibration analysis of sandwich panels with randomly irregular honeycomb core. J Eng Mech 142(11):06016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001153

    Article  Google Scholar 

  5. Suryawanshi VJ, Pawar AC, Palekar SP, Rade KA (2020) Defect detection of composite honeycomb structure by vibration analysis technique. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.12.192

    Article  Google Scholar 

  6. Mozafari H, Najafian S (2019) Vibration analysis of foam filled honeycomb sandwich panel–numerical study. Aust J Mech Eng 17(3):191–198

    Google Scholar 

  7. Xu G-d, Zeng T, Cheng S, Wang X-h, Zhang K (2019) Free vibration of composite sandwich beam with graded corrugated lattice core. Compos Struct 229:111466. https://doi.org/10.1016/j.compstruct.2019.111466

    Article  Google Scholar 

  8. Amini A, Mohammadimehr M, Faraji A (2019) Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator. Steel Compos Struct 32(5):671–686. https://doi.org/10.12989/scs.2019.32.5.671

    Article  Google Scholar 

  9. Shahverdi H, Barati MR, Hakimelahi B (2019) Post-buckling analysis of honeycomb core sandwich panels with geometrical imperfection and graphene reinforced nano-composite face sheets. Mater Res Express 6(9):095017

    Google Scholar 

  10. Malekzadeh P, Setoodeh A, Shojaee M (2018) Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput Methods Appl Mech Eng 340:451–479

    MathSciNet  MATH  Google Scholar 

  11. Gholami R, Ansari R (2019) Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets. Int J Multiscale Comput Eng 17(1). https://doi.org/10.1615/IntJMultCompEng.2019029156

  12. Mishra BP, Barik M (2019) NURBS-augmented finite element method for stability analysis of arbitrary thin plates. Eng Comput 35(2):351–362

    Google Scholar 

  13. Akgoz B, Civalek O (2011) Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos Struct 11(5):403–421

    Google Scholar 

  14. Katariya PV, Hirwani CK, Panda SK (2019) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput 35(2):467–485

    Google Scholar 

  15. Civalek Ö, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessels Pip 84(9):527–535

    Google Scholar 

  16. Yang X, Sahmani S, Safaei B (2020) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput 1–16. https://doi.org/10.1007/s00366-019-00901-2

  17. Akgöz B, Civalek Ö (2017) Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos B Eng 129:77–87

    Google Scholar 

  18. Demir Ç, Civalek Ö (2017) A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos Struct 168:872–884

    Google Scholar 

  19. Civalek Ö, Baltacıoğlu AK (2018) Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Compos Struct 203:458–465

    Google Scholar 

  20. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146

    Google Scholar 

  21. Gao N, Wei Z, Zhang R, Hou H (2019) Low-frequency elastic wave attenuation in a composite acoustic black hole beam. Appl Acoust 154:68–76

    Google Scholar 

  22. Gao N, Zhang Y (2019) A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber. J Vib Control 25(3):538–548

    Google Scholar 

  23. Gao N, Hou H, Wu JH (2018) A composite and deformable honeycomb acoustic metamaterial. Int J Mod Phys B 32(20):1850204

    Google Scholar 

  24. Gao N, Wu JH, Yu L, Hou H (2016) Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal. Int J Mod Phys B 30(18):1650111

    Google Scholar 

  25. Tian X, Song Z, Wang J (2019) Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dyn Earthq Eng 126:105813

    Google Scholar 

  26. Mou B, Bai Y, Patel V (2020) Post-local buckling failure of slender and over-design circular CFT columns with high-strength materials. Eng Struct 210:110197

    Google Scholar 

  27. Guo C, Hu M, Li Z, Duan F, He L, Zhang Z, Marchetti F, Du M (2020) Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers. Sens Actuators B Chem 309:127821

    Google Scholar 

  28. Mou B, Li X, Qiao Q, He B, Wu M (2019) Seismic behaviour of the corner joints of a frame under biaxial cyclic loading. Eng Struct 196:109316

    Google Scholar 

  29. Mou B, Zhao F, Qiao Q, Wang L, Li H, He B, Hao Z (2019) Flexural behavior of beam to column joints with or without an overlying concrete slab. Eng Struct 199:109616

    Google Scholar 

  30. Luo X, Guo J, Chang P, Qian H, Pei F, Wang W, Miao K, Guo S, Feng G (2020) ZSM-5 @ MCM-41 composite porous materials with a core-shell structure: adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. Sep Purif Technol 239:116516

    Google Scholar 

  31. Chen H, Zhang G, Fan D, Fang L, Huang L (2020) Nonlinear lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement. https://doi.org/10.1016/j.measurement.2020.108026

  32. Sobhy M (2020) Differential quadrature method for magneto-hygrothermal bending of functionally graded graphene/Al sandwich-curved beams with honeycomb core via a new higher-order theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636219900668

    Article  Google Scholar 

  33. Wang Y-j, Zhang Z-j, Xue X-m, Zhang L (2019) Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin Walled Struct 145:106425

    Google Scholar 

  34. Zhang Z-J, Han B, Zhang Q-C, Jin F (2017) Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos Struct 171:335–344. https://doi.org/10.1016/j.compstruct.2017.03.045

    Article  Google Scholar 

  35. Zhang Y, Li Y (2019) Nonlinear dynamic analysis of a double curvature honeycomb sandwich shell with simply supported boundaries by the homotopy analysis method. Compos Struct 221:110884. https://doi.org/10.1016/j.compstruct.2019.04.056

    Article  Google Scholar 

  36. Keleshteri M, Asadi H, Aghdam M (2019) Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin Walled Struct 135:453–462. https://doi.org/10.1016/j.tws.2018.11.020

    Article  Google Scholar 

  37. Ansari R, Torabi J (2019) Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates. Polym Compos 40(S2):E1364–E1377. https://doi.org/10.1002/pc.24998

    Article  Google Scholar 

  38. Keleshteri M, Asadi H, Wang Q (2017) Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method. Comput Methods Appl Mech Eng 325:689–710. https://doi.org/10.1016/j.cma.2017.07.036

    Article  MathSciNet  MATH  Google Scholar 

  39. Mohammadzadeh-Keleshteri M, Asadi H, Aghdam M (2017) Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct 171:100–112. https://doi.org/10.1016/j.compstruct.2017.01.048

    Article  Google Scholar 

  40. Keleshteri M, Asadi H, Wang Q (2017) Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin Walled Struct 120:203–214

    Google Scholar 

  41. Torabi J, Ansari R (2017) Nonlinear free vibration analysis of thermally induced FG-CNTRC annular plates: asymmetric versus axisymmetric study. Comput Methods Appl Mech Eng 324:327–347

    MathSciNet  MATH  Google Scholar 

  42. Moayedi H, Hayati S (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125

    Article  Google Scholar 

  43. Moayedi H, Hayati S (2018) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput 66:208–219

    Google Scholar 

  44. Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31(2):327–336. https://doi.org/10.1007/s00521-017-2990-z

    Article  Google Scholar 

  45. Thostenson E, Li W, Wang D, Ren Z, Chou T (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037

    Google Scholar 

  46. Shen H-S (2009) A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators. Compos Struct 91(3):375–384

    Google Scholar 

  47. Rafiee M, Liu X, He X, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333(14):3236–3251

    Google Scholar 

  48. Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69(3–4):335–342. https://doi.org/10.1016/j.compscitech.2008.10.019

    Article  Google Scholar 

  49. Safarpour M, Rahimi A, NoormohammadiArani O, Rabczuk T (2020) Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin–Tsai homogenization model with the aid of GDQM. Appl Sci 10(4):1412

    Google Scholar 

  50. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Google Scholar 

  51. Wu H, Kitipornchai S, Yang J (2017) Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Appl Math Model 42:735–752

    MathSciNet  MATH  Google Scholar 

  52. Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Compos B Eng 173:106955

    Google Scholar 

  53. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  54. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Google Scholar 

  55. Safarpour H, Mohammadi K, Ghadiri M (2017) Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution. J Mech Behav Mater 26(1–2):9–24

    Google Scholar 

  56. SafarPour H, Hosseini M, Ghadiri M (2017) Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: an exact solution. J Therm Stress 40(11):1353–1367

    Google Scholar 

  57. Ebrahimi F, Safarpour H (2018) Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects. Wind Struct 27(6):431–438. https://doi.org//10.12989/was.2018.27.6.431

    Google Scholar 

  58. Mohammadi K, Barouti MM, Safarpour H, Ghadiri M (2019) Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow. J Braz Soc Mech Sci Eng 41(2):93

    Google Scholar 

  59. Safarpour H, Barooti M, Ghadiri M (2019) Influence of rotation on vibration behavior of a functionally graded moderately thick cylindrical nanoshell considering initial hoop tension. J Solid Mech 11(2):254–271

    Google Scholar 

  60. Abdelmalek Z, Karbon M, Eyvazian A, Forooghi A, Safarpour H, Tlili I (2020) On the dynamics of a curved microtubule-associated proteins by considering viscoelastic properties of the living biological cells. J Biomol Struct Dyn 1–15. https://doi.org/10.1080/07391102.2020.1747549

  61. Hosseini-Hashemi S, Es’haghi M, Taher HRD, (2010) An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory. Compos Struct 92(6):1333–1351. https://doi.org/10.1016/j.compstruct.2009.11.006

    Article  Google Scholar 

  62. Ghiasian S, Kiani Y, Sadighi M, Eslami M (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148. https://doi.org/10.1016/j.ijmecsci.2014.02.007

    Article  Google Scholar 

  63. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin Walled Struct 154:106840

    Google Scholar 

  64. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM. Eng Comput 1–24. https://doi.org/10.1007/s00366-020-01144-2

  65. Al-Furjan M, Habibi M, Won Jung D, Chen G, Safarpour M, Safarpour H (2020) Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech A Solids 104091. https://doi.org/10.1016/j.euromechsol.2020.104091

  66. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Compos Struct 252:112737. https://doi.org/10.1016/j.compstruct.2020.112737

    Google Scholar 

  67. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  68. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. https://doi.org/10.1142/S1758825120500660

  69. Shi X, Li J, Habibi M (2020) On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow. Mech Based Des Struct Mach 1–37. https://doi.org/10.1080/15397734.2020.1772088

  70. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge–Kutta and GDQ methods. Mech Based Des Struct Mach 1–22. https://doi.org/10.1080/15397734.2020.1779086

  71. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput 1–18. https://doi.org/10.1007/s00366-020-01088-7

  72. Zhang X, Shamsodin M, Wang H, NoormohammadiArani O, khan AM, Habibi M, Al-Furjan M (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dyn 1–26. https://doi.org/10.1080/07391102.2020.1760939

  73. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet-reinforced composite circular microplate. J Vib Control. https://doi.org/10.1177/1077546320923930

  74. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin Walled Struct 150:106683

    Google Scholar 

  75. Cheshmeh E, Karbon M, Eyvazian A, Jung D, Tran T, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher-order shear deformation theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1744005

    Article  Google Scholar 

  76. Najaafi N, Jamali M, Habibi M, Sadeghi S, Jung DW, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1751297

    Article  Google Scholar 

  77. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, Won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  78. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) Stability and dynamics of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12(4):586

    Google Scholar 

  79. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin Walled Struct 149:106669

    Google Scholar 

  80. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):5616. https://doi.org/10.1038/s41598-020-61855-w

    Article  Google Scholar 

  81. Lori ES, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput 1–20. https://doi.org/10.1007/s00366-020-01004-z

  82. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  83. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  84. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach 1–28. https://doi.org/10.1080/15397734.2020.1719509

  85. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135(2):144

    Google Scholar 

  86. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2019) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26:1–13. https://doi.org/10.1007/s00542-019-04542-9

    Google Scholar 

  87. Adamian A, Safari KH, Sheikholeslami M, Habibi M, Al-Furjan M, Chen G (2020) Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel. Appl Sci 10(9):3251

    Google Scholar 

  88. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size‑dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

  89. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7):1707

    Google Scholar 

  90. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L Buckling and frequency responses of a graphen nanoplatelet reinforced composite microdisk. Int J Appl Mech. https://doi.org/10.1142/S1758825119501023

  91. Shu C (2012) Differential quadrature and its application in engineering. Springer Science & Business Media, New York

    Google Scholar 

  92. Bagheri H, Kiani Y, Eslami M (2017) Asymmetric thermo-inertial buckling of annular plates. Acta Mech 228(4):1493–1509

    MathSciNet  MATH  Google Scholar 

  93. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 67(2). https://doi.org/10.1115/1.4028859

  94. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H, Foong L (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12(01):2050010

    Google Scholar 

  95. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng Part C J Mech Eng Sci 234(2):512–529

    Google Scholar 

  96. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mach 1–25. https://doi.org/10.1080/15397734.2019.1705166

  97. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Des Struct Mach 1–30. https://doi.org/10.1080/15397734.2019.1701490

  98. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach 1–19. https://doi.org/10.1080/15397734.2019.1697932

  99. Ebrahimi F, Mohammadi K, Barouti MM, Habibi M (2019) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media 1–27. https://doi.org/10.1080/17455030.2019.1694729

  100. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  101. Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25(19–20):2627–2640

    MathSciNet  Google Scholar 

  102. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35(4):1375–1389

    Google Scholar 

  103. Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15(3):569–583

    Google Scholar 

  104. Hashemi HR, Alizadeh AA, Oyarhossein MA, Shavalipour A, Makkiabadi M, Habibi M (2019) Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves Random Complex Media 1–27. https://doi.org/10.1080/17455030.2019.1662968

  105. Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2019) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach 48:1–18. https://doi.org/10.1080/15397734.2019.1662310

    Google Scholar 

  106. Esmailpoor Hajilak Z, Pourghader J, Hashemabadi D, Sharifi Bagh F, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach 47(5):521–545

    Google Scholar 

  107. Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A, Habibi M, Hashemi R (2019) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Des Struct Mach 48:1–17. https://doi.org/10.1080/15397734.2019.1633343

    Google Scholar 

  108. Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng Part C J Mech Eng Sci 233(13):4590–4605

    Google Scholar 

  109. Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11(2):440–453

    Google Scholar 

  110. Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134(6):307

    Google Scholar 

  111. Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77(10):2608–2626

    MathSciNet  MATH  Google Scholar 

  112. Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Braz Soc Mech Sci Eng 41(5):221

    Google Scholar 

  113. Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control 25(9):1543–1557

    MathSciNet  Google Scholar 

  114. Karimiasl M, Ebrahimi F, Akgöz B (2019) Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Compos Struct 223:110988

    Google Scholar 

  115. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232(8):625–636

    Google Scholar 

  116. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25(2):382–389

    Google Scholar 

  117. Rahimi A, Alibeigloo A, Safarpour M (2020) Three-dimensional static and free vibration analysis of graphene platelet-reinforced porous composite cylindrical shell. J Vib Control. https://doi.org/10.1177/1077546320902340

    Article  MathSciNet  MATH  Google Scholar 

  118. Al-Furjan MSH, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  119. Mahdi Alipour S, Mohammadi K, Mohammadi A, Habibi M, Safarpour H (2019) On dynamic of electro-elastic GNPRC cylindrical shell using modified length-couple stress parameter. Mech Based Des Struct Mach 1–20. https://doi.org/10.1080/15397734.2020.1830106

  120. Safarpour H, Ghanizadeh SA, Habibi M (2018) Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur Phys J Plus 133(12):532

    Google Scholar 

  121. Hosseini S, Habibi M, Assempour A (2018) Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers. Modares Mech Eng 18(6):174–181

    Google Scholar 

  122. Fazaeli A, Shahbazi Karami J, Habibi M, Payganeh G (2018) Experimental and finite element investigation of titanium tubes hot gas forming and production of square cross-section specimens. Aerosp Mech J 14(52):00467

    Google Scholar 

  123. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Google Scholar 

  124. Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R (2017) Determination of forming limit diagram using two modified finite element models. Mech Eng 48(4):141–144

    Google Scholar 

  125. Ghazanfari A, Assempour A, Habibi M, Hashemi R (2016) Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak–Kuczynski model. Modares Mech Eng 16(1):137–143

    Google Scholar 

  126. Fazaeli A, Habibi M, Ekrami A (2016) Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite-pearlite steel with the same chemical composition. Metall Eng 19(2):84–93

    Google Scholar 

  127. Ghayesh MH (2019) Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Appl Acoust 154:121–128

    Google Scholar 

  128. Gholipour A, Ghayesh MH, Zhang Y (2020) A comparison between elastic and viscoelastic asymmetric dynamics of elastically supported AFG beams. Vibration 3(1):3–17

    Google Scholar 

  129. Gholipour A, Ghayesh MH, Hussain S (2020) A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Comput 1–16. https://doi.org/10.1007/s00366-020-01017-8

  130. Ghayesh MH (2019) Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 71:244–253

    MathSciNet  MATH  Google Scholar 

  131. Ghayesh MH, Farokhi H (2020) Extremely large dynamics of axially excited cantilevers. Thin Walled Struct 154:106275. https://doi.org/10.1016/j.euromechsol.2020.103953

    MATH  Google Scholar 

  132. Ghayesh MH (2018) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Google Scholar 

  133. Farokhi H, Ghayesh MH (2020) Extremely large-amplitude dynamics of cantilevers under coupled base excitation. Eur J Mech A Solids 81:103953

    MathSciNet  MATH  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (51675148). The Outstanding Young Teachers Fund of Hangzhou Dianzi University (GK160203201002/003). National Natural Science Foundation of China (51805475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Habibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Fereidouni, M., Habibi, M. et al. Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework. Engineering with Computers 38 (Suppl 5), 3675–3697 (2022). https://doi.org/10.1007/s00366-020-01177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01177-7

Keywords

Navigation