Skip to main content
Log in

Adaptive neuro-fuzzy prediction of flow pattern and gas hold-up in bubble column reactors

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The prediction of fluid dynamics in multiphase bubble column reactors is a subject of major concern to appropriately design and optimize them. This paper employs the combination of computational fluid dynamics (CFD) (i.e., Euler–Euler approach) and adaptive neuro-fuzzy inference system (ANFIS) to propose new a viewpoint for multiphase modeling, including the accuracy of soft computing technique in prediction of a 3D bubble column reactor. Existing experimental, numerical and correlations results in the literature have been used to validate the implementation of the Euler–Euler approach. The results of Euler–Euler approach for a 3D bubble column reactor has been used for input training data which are liquid velocity, turbulent kinetic energy and gas hold-up. The ANFIS results have been also compared with Eulerian results, using root-mean-square error (RMSE) and coefficient of determination and Pearson coefficient. The results show that, flow pattern and gas hold-up are mainly affected by bubble column height, meaning towards sparger region, gas hold-up has a higher value near the ring sparger. According to the results, a greater improvement in estimation has been achieved through the ANFIS. Overall, the results show that ANFIS is a robust method to predict bubble column hydrodynamics parameters (e.g., liquid flow pattern and gas hold-up) as input. In addition, the exactness of the proposed ANFIS model may be boosted by considering more meteorological parameters as input values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(C_{\text{D}}\) :

Drag force coefficient (dimensionless)

\(C_{\text{TD}}\) :

Turbulent dispersion coefficient (dimensionless)

\(C_{\varepsilon 1}\) :

Model parameter in turbulent dissipation energy equation (dimensionless)

\(C_{\varepsilon 2}\) :

Model parameter in turbulent dissipation energy equation (dimensionless)

\(C_{\mu }\) :

Constant in kε model (dimensionless)

\(C_{{\mu ,{\text{BI}}}}\) :

Constant in bubble-induced turbulence model (dimensionless)

\(d_{\text{B}}\) :

Bubble diameter (m)

\(d_{0}\) :

Sparger hole diameter (m)

\(D\) :

Diameter of the column (m)

S d :

Sparger diameter

\(g\) :

Gravitational constant (m/s2)

\(G\) :

Generation term (kg/m s2)

\(H\) :

Height (m)

\(k\) :

Turbulent kinetic energy per unit mass (m2/s2)

\(M_{\text{I}}\) :

Total interfacial force acting between two phases (N/m3)

\(M_{\text{e}}\) :

Drag force (N/m3)

\(P\) :

Pressure (N/m2)

\(r\) :

Radial distance (m)

\(R\) :

Column radius (m)

\({\text{Re}}_{\text{B}}\) :

Reynolds number (\(= d_{\text{B}} V_{\text{S}} /v\)) (dimensionless)

\(V_{\text{G}}\) :

Superficial gas velocity (m/s)

\(V_{\text{T}}\) :

Terminal velocity (m2/s)

\(\varepsilon\) :

Turbulent energy dissipation rate per unit mass (m2/s3)

\(\in\) :

Fractional phase hold-up (dimensionless)

\(\bar{ \in }\) :

Average fractional phase hold-up (dimensionless)

\(\mu\) :

Molecular viscosity (Pa s)

\(\mu_{\text{BI}}\) :

Bubble-induced viscosity (Pa s)

\(\mu_{\text{eff}}\) :

Effective viscosity (Pa s)

\(\rho\) :

Density (kg/m3)

\(\mu_{\text{T}}\) :

Turbulent viscosity (Pa s)

\(\sigma\) :

Surface tension (N/m)

\(\sigma_{\varepsilon }\) :

Prandtl number for turbulent energy dissipation rate (dimensionless)

\(\sigma_{k}\) :

Prandtl number for turbulent kinetic energy (dimensionless)

\(\tau_{k}\) :

Shear stress of phase k (Pa)

\({\text{G}}\) :

Gas phase

\({\text{L}}\) :

Liquid phase

References

  1. Buwa VV, Gerlach D, Durst F, Schlücker E (2007) Numerical simulations of bubble formation on submerged orifices: period-1 and period-2 bubbling regimes. Chem Eng Sci 62:7119–7132

    Article  Google Scholar 

  2. Chen P (2004) Modeling the fluid dynamics of bubble column flows, Washington University, 2004. Department of Chemical Engineering

  3. Dhotre MT, Ekambara K, Joshi JB (2004) CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors. Exp Thermal Fluid Sci 28(5):407–421

    Article  Google Scholar 

  4. Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem Eng Process 40(2):97–111

    Article  Google Scholar 

  5. Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283

    Article  Google Scholar 

  6. Krishna R, Urseanu M, Van Baten J, Ellenberger J (2000) Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime. Chem Eng J 78:43–51

    Article  Google Scholar 

  7. Krishna R, Van Baten J (1999) Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments. Int Commun Heat Mass Transfer 26:965–974

    Article  Google Scholar 

  8. Krishna R, Van Baten J (2001) Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime. Chem Eng Sci 56:6249–6258

    Article  Google Scholar 

  9. Olmos E (2002) Étude expérimentale et numérique des écoulements gaz-liquide en colonne à bulles. INPL, Vandoeuvre-les-Nancy

    Google Scholar 

  10. Olmos E, Gentric C, Midoux N (2003) Numerical description of flow regime transitions in bubble column reactors by a multiple gas phase model. Chem Eng Sci 58:2113–2121

    Article  Google Scholar 

  11. Zhang D, Deen N, Kuipers J (2006) Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem Eng Sci 61:7593–7608

    Article  Google Scholar 

  12. Pfleger D, Becker S (2001) Modelling and simulation of the dynamic flow behaviour in a bubble column. Chem Eng Sci 56:1737–1747

    Article  Google Scholar 

  13. Pfleger D, Gomes S, Gilbert N, Wagner H-G (1999) Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modelling approach. Chem Eng Sci 54:5091–5099

    Article  Google Scholar 

  14. Lin HY, Chen W, Tsutsumi A (2003) Long-term prediction of nonlinear hydrodynamics in bubble columns by using artificial neural networks. Chem Eng Process 42:611–620

    Article  Google Scholar 

  15. Al-Masry WA (2006) Analysis of hydrodynamics of external loop circulating bubble columns with open channel gas separators using neural networks. Chem Eng Res Des 84:483–486

    Article  Google Scholar 

  16. Massinaei M, Doostmohammadi R (2010) Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques. Miner Eng 23:83–90

    Article  Google Scholar 

  17. Shaikh A, Al-Dahhan M (2003) Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors. Chem Eng Process 42:599–610

    Article  Google Scholar 

  18. Lemoine R, Behkish A, Sehabiague L, Heintz YJ, Oukaci R, Morsi BI (2008) An algorithm for predicting the hydrodynamic and mass transfer parameters in bubble column and slurry bubble column reactors. Fuel Process Technol 89:322–343

    Article  Google Scholar 

  19. Chen W, Hasegawa T, Tsutsumi A, Otawara K, Shigaki Y (2003) Generalized dynamic modeling of local heat transfer in bubble columns. Chem Eng J 96:37–44

    Article  Google Scholar 

  20. Gandhi AB, Joshi JB, Kulkarni AA, Jayaraman VK, Kulkarni BD (2008) SVR-based prediction of point gas hold-up for bubble column reactor through recurrence quantification analysis of LDA time-series. Int J Multiph Flow 34(12):1099–1107

    Article  Google Scholar 

  21. Gandhi AB, Joshi JB, Jayaraman VK, Kulkarni BD (2007) Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas–liquid systems. Chem Eng Sci 62(24):7078–7089

    Article  Google Scholar 

  22. Petković D, Pavlović ND, Ćojbašić Ž, Pavlović NT (2013) Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces. Expert Syst Appl 40:281–286

    Article  Google Scholar 

  23. Petković D, Issa M, Pavlović ND, Pavlović NT, Zentner L (2012) Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst Appl 39:9477–9482

    Article  Google Scholar 

  24. Petković D, Ćojbašić Ž, Lukić S (2013) Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system. Expert Syst Appl 40:4490–4495

    Article  Google Scholar 

  25. Petković D, Ćojbašić Ž (2012) Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Comput Appl 21:2065–2070

    Article  Google Scholar 

  26. Dastorani MT (2010) Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in central Iran). J Appl Sci 10:2387–2394

    Article  Google Scholar 

  27. El-Shafie A, Jaafer O, Seyed A (2011) Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int J Phys Sci 6:2875–2888

    Google Scholar 

  28. Sato Y, Sekoguchi K (1975) Liquid velocity distribution in two-phase bubble flow. Int J Multiph Flow 2:79–95

    Article  Google Scholar 

  29. Lopez de Bertodano M, Lahey RT Jr, Jones OC (1994) Turbulent bubbly two-phase flow data in a triangular duct. Nucl Eng Des 146:43–52

    Article  Google Scholar 

  30. Sokolichin A, Eigenberger G (1999) Applicability of the standard k-e turbulence model to the dynamic simulation of bubble columns-Part I: detailed numerical simulations. Chem Eng Sci 54:2273–2284

    Article  Google Scholar 

  31. Deen NG, Solberg T, Hjertager BH (2000) Numerical simulation of the gas-liquid flow in a square cross-sectioned bubble column. In: 14th int. congress of chemical and process engineering, Praha-Czech Republic

  32. Safa M, Shariati M, Ibrahim Z, Toghroli A, Baharom SB, Nor NM et al (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos Struct 21(3):679–688

    Article  Google Scholar 

  33. Toghroli A, Mohammadhassani M, Shariati M, Suhatril M, Ibrahim Z, Ramli Sulong NH (2014) Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos Struct 17(5):623–639

    Article  Google Scholar 

  34. Mansouri I, Shariati M, Safa M, Ibrahim Z, Tahir MM, Petković D (2019) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique. J Intell Manuf 30(3):1247–1257

    Article  Google Scholar 

  35. Mohammadhassani M, Saleh A, Suhatril M, Safa M (2015) Fuzzy modelling approach for shear strength prediction of RC deep beams. Smart Struct Syst 16(3):497–519

    Article  Google Scholar 

  36. Toghroli A, Darvishmoghaddam E, Zandi Y, Parvan M, Safa M, Abdullahi M et al (2018) Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method. Comput Concrete 21(5):525–530

    Google Scholar 

  37. Sedghi Y, Zandi Y, Shariati M, Ahmadi E, Moghimi Azar V, Toghroli A et al (2018) Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct Syst 22(3):335–340

    Google Scholar 

  38. Toghroli A (2015) Applications of the ANFIS and LR models in the prediction of shear connection in composite beams. Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Jović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jović, S. Adaptive neuro-fuzzy prediction of flow pattern and gas hold-up in bubble column reactors. Engineering with Computers 37, 1723–1734 (2021). https://doi.org/10.1007/s00366-019-00905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00905-y

Keywords

Navigation