Skip to main content
Log in

Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Fabrication of bimodal materials, with coarse grains embedded inside a matrix of nanocrystalline or ultrafine grains, is a key way to enhance the strength and ductility of materials. In this paper, the finite-element method is performed in conjunction with the 2D representative volume elements from the real microstructure of bimodal materials to investigate their tensile behavior. Therefore, using a composite model, a dislocation density-based constitutive equation is employed to describe the flow stress of ultrafine grain and coarse grain phases, and then, the stress–strain response of bimodal material is extracted from the mechanism-based strain gradient plasticity. Then, the proposed model combined with extended finite-element method and cohesive zone modeling is utilized to investigate the crack nucleation site and propagation path within the microstructure of the bimodal material. The predicted tensile and failure behavior are compared with available experimental results. An acceptable agreement is observed between the predicted results from the proposed model and experimental data on bimodal Ni and bimodal Al-7.5 Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koch CC (2003) Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater 49:657–662

    Article  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Principle of equal channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  3. Harai Y, Ito Y, Horita Z (2008) High pressure torsion using ring specimens. Scr Mater 58:469–482

    Article  Google Scholar 

  4. Panigrahi SK, Jayaganthan R (2011) Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Mater Des 32:3150–3160

    Article  Google Scholar 

  5. Yadollahpour M, Hosseini-Toudeshky H, Karimzadeh F (2016) The use of response surface methodology in cryrolling of ultrafine grained Al6061 to improve the mechanical properties. Part L J Mater Des Appl 230:400–417

    Google Scholar 

  6. Newbery AP, Ahn B, Pao P, Nutt SR, Lavernia EJ (2007) A ductile UFG Al alloy via cryomilling and quasi-isostatic forging. Adv Mater Res 29–30:21–29

    Article  Google Scholar 

  7. Newbery AP, Ahn B, Hayes RW, Pao PS, Nutt SR, Lavernia EJ (2008) Consolidation and forging methods for a cryomilled Al alloy. Metall Mater Trans A 39:2193–2205

    Article  Google Scholar 

  8. Wang YM, Chen MW, Zhou FH, Ma E (2002) Extraordinarily high tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  Google Scholar 

  9. Tellkamp VL, Melmed A, Lavernia EJ (2001) Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A 32:2335–2343

    Article  Google Scholar 

  10. Mahesh BV, Raman RKS, Koch CC (2012) Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J Mater Sci 47:7735–7743

    Article  Google Scholar 

  11. Vinogradov A, Hashimoto S, Patlan V, Kitagawa K (2001) Atomic force microscopic study of surface morphology of ultra-fine grained materials after tenslie testing. Mater Sci Eng A 319–321:862–866

    Article  Google Scholar 

  12. Bahmanpour H, Youssef KM, Horky J, Setman D, Atwater MA (2011) Deformation twins and related softening behavior in nanocrystalline Cu–30 % Zn alloy. Acta Mater 60:3340–3349

    Article  Google Scholar 

  13. Lapovok R, Molotnikov A, Levin Y, Bandaranayake A, Estrin Y (2012) Machining of coarse grained and ultra fine grained titanium. J Mater Sci 47:4589–4594

    Article  Google Scholar 

  14. Dirrasa G, Gubicza J, Ramtani S, Bui QH, Szilágyi T (2010) Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size. Mater Sci Eng A 527:1206–1214

    Article  Google Scholar 

  15. Bui QH (2012) Heterogeneous plastic deformation in bimodal bulk ultrafine-grained nickel. J Mater Sci 47:1902–1909

    Article  MathSciNet  Google Scholar 

  16. Lee Z, Witkin D, Radmilovic V, Lavernia E, Nutt S (2005) Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5 Mg alloy. Mater Sci Eng A 410–411:462–467

    Article  Google Scholar 

  17. Fan GJ, Choo H, Liaw PK, Lavernia EJ (2006) Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater 54:1759–1766

    Article  Google Scholar 

  18. Han BQ, Lee Z, Wittkin D, Nutt S, Lavernia EJ (2005) Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys. Metall Mater Trans A 36A:957–965

    Article  Google Scholar 

  19. Lee ZH, Radmilovic V, Ahn B, Lavernia EJ, Nutt SR (2010) Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al–Mg alloy. Metall Mater Trans A 41:795–801

    Article  Google Scholar 

  20. He G, Eckert J, Löser W, Schultz L (2003) Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nature Mater 2:33–37

    Article  Google Scholar 

  21. Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater 54:3015–3024

    Article  Google Scholar 

  22. Ye RQ, Han BQ, Lavernia EJ (2005) Simulation of deformation and failure process in bimodal Al alloys. Metall Mater Trans A 36:1833–1840

    Article  Google Scholar 

  23. Joshi SP, Ramesh KT, Han BQ, Lavernia EJ (2006) Modeling the constitutive response of bimodal metals. Metall Mater Trans A 37:2397–2404

    Article  Google Scholar 

  24. Raeisinia B, Sinclair CW, Poole WJ, Tome CN (2008) On the impact of grain size distribution on the plastic behaviour of polycrystalline metals. Modell Simul Mater Sci Eng 16:1–15

    Article  Google Scholar 

  25. Ramtani S, Dirras G, Bui HQ (2010) A bimodal bulk ultra-fine-grained nickel: experimental and micromechanical investigations. Mech Mater 42:522–536

    Article  Google Scholar 

  26. Xia SH, Wang JT (2010) A micromechanical model of toughening behavior in the dual-phase composite. Int J Plast 26:1442–1460

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu L, Lu J (2012) Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int J Plast 30–31:166–184

    Article  Google Scholar 

  28. Zhu L, Shi S, Lu K, Lu J (2012) A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution. Acta Mater 60:5762–5772

    Article  Google Scholar 

  29. Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20:753–782

    Article  MATH  Google Scholar 

  30. Vajragupta N, Uthaisangsuk V, Schmaling B, Münstermann S, Hartmaier A, Bleck W (2012) A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci 54:271–279

    Article  Google Scholar 

  31. Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J, Shadalooyi G (2014) Microstructural deformation pattern and mechanical behavior analyses of DP-600 dual phase steel. Mater Sci Eng A 600:108–121

    Article  Google Scholar 

  32. Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J (2015) Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Mater Des 68:167–176

    Article  Google Scholar 

  33. Taylor GI (1934) The mechanism of plastic deformation of crystals: part 1 theoretical. In: Proceedings of the Royal Society A, pp 362–387

  34. Kocks UF, Mecking H (2003) The physics and phenomenology of strain hardening. Prog Mater Sci 48:171–273

    Article  Google Scholar 

  35. Sinclair CW, Poole WJ, Bréchet Y (2006) A model for the grain size dependent work hardening of copper. Scr Mater 55:739–742

    Article  Google Scholar 

  36. Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steel. Scr Mater 58:484–487

    Article  Google Scholar 

  37. Zhou J, Zhu R, Zhang Z (2008) A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater Sci Eng A 480:419–427

    Article  Google Scholar 

  38. Kim HS, Bush MB, Estrin Y (2000) A phase mixture model of a particle reinforced composite with fine microstructure. Mater Sci Eng A 276:175–185

    Article  Google Scholar 

  39. ABAQUS 6.12 (2012) Standard user’s manual, Dessault Systems, 2012

  40. Moes N, Belytschko T (2002) Extended Finite Element Method for Cohesive Crack Growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  41. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MathSciNet  MATH  Google Scholar 

  42. Song JH, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67:868–893

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yadollahpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadollahpour, M., Hosseini-Toudeshky, H. Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution. Engineering with Computers 33, 125–136 (2017). https://doi.org/10.1007/s00366-016-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0459-9

Keywords

Navigation