Skip to main content
Log in

Numerical Solution of the Beltrami Equation Via a Purely Linear System

  • Published:
Constructive Approximation Aims and scope

Abstract

An effective algorithm is presented for solving the Beltrami equation \(\partial f / \partial \overline{z } =\mu \,\partial f/\partial z\) in a planar disk. The disk is triangulated in a simple way, and f is approximated by piecewise linear mappings; the images of the vertices of the triangles are defined by an overdetermined system of linear equations. (Certain apparently nonlinear conditions on the boundary are eliminated by means of a symmetry construction.) The linear system is sparse, and its solution is obtained by standard least-squares, so the algorithm involves no evaluation of singular integrals nor any iterative procedure for obtaining a single approximation of f. Numerical examples are provided, including a deformation in a Teichmüller space of a Fuchsian group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahlfors, L.: Lectures on Quasiconformal Mappings, 2nd edition, University Lecture Series 38. American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  2. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: Laplace–Beltrami operator and brain surface flattening. IEEE Trans. Med. Imaging 18, 700–711 (1999)

    Article  Google Scholar 

  3. Astala, K., Mueller, J.L., Perämäki, A., Päivärinta, L., Siltanen, S.: Direct electrical impedance tomography for nonsmooth conductivities. Inverse Probl. Imaging 5, 531–549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM (1996). ISBN 978-0-89871-360-2

  5. Brown, P., Porter, R.M.: Conformal mapping of circular quadrilaterals and Weierstrass elliptic functions. Comput. Methods Funct. Theory 11, 463–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daripa, P., Mashat, D.: An efficient and novel numerical method for quasiconformal domains. Numer. Algorithms 18, 159–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daripa, P.: A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings. J. Comput. Phys. 106, 355–365 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daripa, P.: On applications of a complex variable method in compressible flows. J. Comput. Phys. 88, 337–361 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy–Riemann equations in the complex plane. SIAM J. Sci. Stat. Comput. 13, 1418–1432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  11. Gaidashev, D., Khmelev, D.: On numerical algorithms for the solution of a Beltrami equation. SIAM J. Numer. Anal. 46(5), 2238–2253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, X.D., Zeng, W., Luo, F., Yau, Sh-T: Numerical computation of surface conformal mappings. Comput. Methods Funct. Theory 11, 747–787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harvey, W.J. ed.: Discrete Groups and Automorphic Functions. In: Proceedings of an Instructional Conference held in Cambridge, July 28–August 15, 1975. Academic Press (1977)

  14. He, Zh-X: Solving Beltrami equations by circle packing. Trans. A.M.S. 322, 657–670 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)

    MATH  Google Scholar 

  16. Kamenetskiĭ, D.S., Tsynkov, S.V.: On the construction of images of simply connected domains realized by solutions of a system of Beltrami equations (Russian). Akad. Nauk SSSR Inst. Prikl. Mat. Preprint no. 155 (1990)

  17. Lehto, O.: Univalent Functions and Teichmüller Spaces. Springer, New York (1995)

    MATH  Google Scholar 

  18. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd Edition, Die Grundlehren der Mathematischen Wissenschaften, vol. 126. Springer, New York (1973)

    MATH  Google Scholar 

  19. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least Squares Conformal Maps for Automatic Texture Atlas Generation, ACM Transactions on Graphics (TOG). In: Proceedings of ACM SIGGRAPH 2002, 21, 362–371 (2002)

  20. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using Beltrami representation. SIAM J. Imaging Sci. 6, 1880–1902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lui, L.M., Lam, K.C., Yau, S.-T., Gu, X.: Teichmüller mapping (T-map) and its applications to landmark matching registration. SIAM J. Imaging Sci. 7(1), 391–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Munkres, J.R.: Elementary Differential Topology. Lectures Given at Massachusetts Institute of Technology, Fall, 1961. Revised edition. Annals of Mathematics Studies, vol. 54, Princeton University Press, Princeton, N.J

  23. Porter, R.M.: Numerical Solution of the Beltrami Equation. arXiv:0802.1195 [math.CV]

  24. Samsoniya, Z.V.: Construction of certain quasiconformal mappings (Russian). Trudy Vychisl. Tsentra Akad. Nauk Gruzin. SSR 23, 76–89 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Szegö, G.: Conformal mapping of the interior of an ellipse onto a circle. Am. Math. Monthly 57, 474–479 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trott, M.: The Mathematica GuideBook for Numerics. Springer Science+Business Media, Inc., Berlin (2006)

    Book  MATH  Google Scholar 

  27. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, reprint of the (1927) 4th edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996)

  28. Williams, G.B.: A circle packing measurable Riemann theorem. Proc. Am. Math. Soc. 134, 2139–2146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to T. Sugawa for many critical and useful comments in the preparation of this work, as well as to the referees who uncovered some significant errors in the first version and made numerous useful suggestions (in particular the use of [18, Section 7.1]). The first author is also grateful to D. Marshall for pointing out several fundamental errors in the approach proposed in [23]. This paper forms part of the second author’s Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Porter.

Additional information

Communicated by Stephan Ruscheweyh.

The first author was partially supported by CONACyT Grant 166183. The second author was supported by International Advanced Research and Education Organization in Tohoku University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, R.M., Shimauchi, H. Numerical Solution of the Beltrami Equation Via a Purely Linear System. Constr Approx 43, 371–407 (2016). https://doi.org/10.1007/s00365-016-9334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9334-6

Keywords

Mathematics Subject Classification

Navigation