Skip to main content
Log in

New \(2\times 2\)-Matrix Linear Problems for the Painlevé Equations III, V

  • Published:
Constructive Approximation Aims and scope

Abstract

We construct \(2\times 2\)-matrix linear problems with a spectral parameter for the Painlevé equations I–V by means of the degeneration processes from the elliptic linear problem for the Painlevé VI equation. These processes supplement the known degeneration relations between the Painlevé equations with the degeneration scheme for the associated linear problems. The degeneration relations constructed in this paper are based on the trigonometric, rational, and Inozemtsev limits. The obtained \(2\times 2\)-matrix linear problems for the Painlevé equations III and V are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aminov, G.: Limit relation between Toda chains and the elliptic \(SL(N,{\mathbb{C}})\) top. Theor. Math. Phys. 171(2), 575–588 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aminov, G., Arthamonov, S.: Reduction of the elliptic \({SL}(N, C)\) top. J. Phys. A Math. Theor. 44(7), 075201 (2011)

    Article  MathSciNet  Google Scholar 

  3. Aminov, G., Arthamonov, S.: Degenerating the elliptic Schlesinger system. Theor. Math. Phys. 174(1), 3–24 (2013)

    Article  MathSciNet  Google Scholar 

  4. Arthamonov, S.: New integrable systems as a limit of the elliptic \(SL(N,{\mathbb{C}})\) top. Theor. Math. Phys. 171(2), 589–599 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babich, M.V., Bordag, L.A.: Projective differential geometrical structure of the Painlevé equations. J. Differ. Equ. 157(2), 452–485 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Calogero, F.: Solution of the one-dimensional \(n\)-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12(3), 419–436 (1971)

    Article  MathSciNet  Google Scholar 

  7. Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations I. Commun. Math. Phys. 76, 65–116 (1980). doi:10.1007/BF01197110

    Article  MATH  MathSciNet  Google Scholar 

  8. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painleve Transcendents: The Riemann–Hilbert Approach. American Mathematical Society, Providence, RI (2006)

    Book  Google Scholar 

  9. Fuchs, R.: Sur quelques équations différentielles linéares du second ordre. C. R. Acad. Sci. 141, 555–558 (1905)

    Google Scholar 

  10. Gambier, B.: Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est á points critique fixés. C. R. Acad. Sci. 142, 166–269 (1906)

    Google Scholar 

  11. Garnier, R.: Sur des equations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critique fixés. Acta Math. Ann. 33, 1–55 (1912)

    MathSciNet  Google Scholar 

  12. Garnier, R.: Etudes de l’intégrale générale de l’équation VI de M Painlevé. Ann. Sci. Ecole Norm. Sup. 34, 239–353 (1917)

    MATH  MathSciNet  Google Scholar 

  13. Inozemtsev, V.I.: The finite toda lattices. Commun. Math. Phys. 121(4), 629–638 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Its, A.R., Novokshenov, V.Y.: Isomonodromic Deformation Method in the Theory of Painleve Equations (Lecture Notes in Mathematics). Springer, Berlin and New York (1986)

    Google Scholar 

  15. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painleve: A Modern Theory of Special Functions (Aspects of Mathematics Ser). Vieweg, Braunschweig (1991)

    Book  Google Scholar 

  16. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D Nonlinear Phenom. 2(3), 407–448 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Phys. D Nonlinear Phenom. 4(1), 26–46 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and \(\tau \)-function. Phys. D Nonlinear Phenom. 2(2), 306–352 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krichever, I.M.: Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles. Funct. Anal. Appl. 14, 282–290 (1980). doi:10.1007/BF01078304

    Article  Google Scholar 

  20. Krichever, I.M.: Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations. Mosc. Math. J. 2, 717–752 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Levin, A.M., Olshanetsky, M.A.: Painlevé—Calogero Correspondence. In: van Diejen, J.F., Vinet, L. (eds.) Calogero–Moser–Sutherland Models. CRM Series in Mathematical Physics, pp. 313–332. Springer, New York (2000)

  22. Levin, A.M., Olshanetsky, M.A., Zotov, A.V.: Painleve VI, rigid tops and reflection equation. Commun. Math. Phys. 268, 67–103 (2006). doi:10.1007/s00220-006-0089-y

    Article  MATH  MathSciNet  Google Scholar 

  23. Malmquist, J.: Sur les éuations différentielles du second odre dont l’intégrale générale a ses points critiques fixés. Ark. Mat. Astr. Fys. 17, 1–89 (1922)

    Google Scholar 

  24. Manin, Y.I.: Sixth Painlevé equation, universal elliptic curve, and mirror of \({\varvec {P^2}}\). Am. Math. Soc. Transl. 2(186), 131–151 (1998)

    MathSciNet  Google Scholar 

  25. Mumford, D.: Tata Lectures on Theta I, II. Birkhäuser, Boston (1983)

    Book  Google Scholar 

  26. Okamoto, K.: Polynomial Hamiltonians associated with Painlevé equations. I. Proc. Jpn. Acad. Ser. A 56, 264–268 (1980)

    Article  MATH  Google Scholar 

  27. Okamoto, K.: On the \(\tau \)-function of the Painlevé equations. Phys. D 2, 525–535 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Okamoto, K.: Isomonodromic deformations and Painlevé equations, and the Garnier systems. J. Fac. Sci. Univ. IA 33, 575–618 (1986)

    MATH  Google Scholar 

  29. Painlevé, P.: Memoire sur les équations différentielles dont l’intégrale générale est uniforme. Bull. Soc. Math. Phys. 28, 201–261 (1900)

    MATH  Google Scholar 

  30. Painlevé, P.: Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math. Ann. 21, 1–85 (1902)

    Article  Google Scholar 

  31. Painlevé, P.: Sur les équations différentielles du second ordre á points criticues fixes. C. R. Acad. Sci. 143, 1111–1117 (1906)

    Google Scholar 

  32. Robert, C.: The Painleve Property: One Century Later (CRM Series in Mathematical Physics). Springer, New York (1999)

    MATH  Google Scholar 

  33. Schlesinger, L.: Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. Journal fur die reine und angewandte Mathematik 141, 96–145 (1912)

    MATH  Google Scholar 

  34. Takasaki, K.: Painleve–Calogero correspondence revisited. J. Math. Phys. 42(3), 1443–1473 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. van Diejen, J.F.: Difference Calogero–Moser systems and finite Toda chains. J. Math. Phys. 36(3), 1299–1323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Weil, A.: Elliptic Functions According to Eisenstein and Kronecker. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  37. Zabrodin, A., Zotov, A.: Quantum Painlevé–Calogero correspondence. J. Math. Phys. 53(7), 073507 (2012)

    Article  MathSciNet  Google Scholar 

  38. Zabrodin, A., Zotov, A.: Quantum Painlevé–Calogero correspondence for Painlev \(\acute{V}\text{ I }\). J. Math. Phys. 53(7), 073508 (2012)

    Article  MathSciNet  Google Scholar 

  39. Zotov, A.: Elliptic linear problem for Calogero–Inozemtsev model and Painleve VI equation. Lett. Math. Phys. 67, 153–165 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank M.A. Olshanetsky and A.V. Zotov for suggesting the problem and for many useful discussions. This work was supported in part by the Russian Foundation for Basic Research (Grant Nos. 12-01-00482, 12-01-33071, G.A.A.; 12-02-00594, 12-01-31385, S.B.A.). Both authors have also been supported by the Federal Agency of Science and Innovations of Russian Federation under contract 14.740.11.0347 and by Dynasty Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Aminov.

Additional information

Communicated by Percy Deift and Alexander Its.

Appendices

Appendix 1: Painlevé Equations

In this section, we present a connection between the different forms of the Painlevé equations V, IV, and III considered in this paper.

1.1 Painlevé V

The Painlevé V equation has the following rational form:

$$\begin{aligned} \dfrac{\mathrm{d}^2\lambda }{\mathrm{d}t^2}= & {} \left( \dfrac{1}{2\lambda }+\dfrac{1}{\lambda -1}\right) \left( \dfrac{\mathrm{d}\lambda }{\mathrm{d}t}\right) ^2-\dfrac{1}{t}\dfrac{\mathrm{d}\lambda }{\mathrm{d}t}+\dfrac{\left( \lambda -1\right) ^2}{t^2}\left( \alpha \lambda +\dfrac{\beta }{\lambda }\right) +\gamma \dfrac{\lambda }{t}\nonumber \\&+\,\delta \dfrac{\lambda \left( \lambda +1\right) }{\left( \lambda -1\right) }. \end{aligned}$$
(8.1)

In order to obtain the equivalent form of (8.1) which we use in Sect. 2, one can perform the following change of variables:

$$\begin{aligned} \lambda \left( t\right) =\lambda \left( u\left( t\right) \right) =-\tan ^2\left( \pi u\left( t\right) \right) . \end{aligned}$$

As a result, \( \left( \mathrm{d}\lambda /\mathrm{d}t\right) ^2 \) becomes zero. After the substitution \( t\left( \tau \right) =\mathrm{e}^{\tau } \), the derivative \( \mathrm{d}\lambda /\mathrm{d}t \) becomes zero as well, which leads to

$$\begin{aligned} \dfrac{\mathrm{d}^2 u}{\mathrm{d}t^2}=\dfrac{\alpha }{2\pi }\dfrac{\sin \left( \pi u\right) }{\cos ^3\left( \pi u\right) }+\dfrac{\beta }{2\pi }\dfrac{\cos \left( \pi u\right) }{\sin ^3\left( \pi u\right) }+2\gamma \mathrm{e}^{\tau }\sin \left( 2\pi u\right) +\delta \mathrm{e}^{2\tau }\sin \left( 4\pi u\right) .\nonumber \\ \end{aligned}$$
(8.2)

1.2 Painlevé IV

The Painlevé IV equation has the following rational form:

$$\begin{aligned} \dfrac{\mathrm{d}^2\lambda }{\mathrm{d}t^2}=\dfrac{1}{2\lambda }\left( \dfrac{\mathrm{d}\lambda }{\mathrm{d}t}\right) ^2+\dfrac{3}{2}\lambda ^3+4t\lambda ^2+2\left( t^2-\alpha \right) \lambda +\dfrac{\beta }{\lambda }. \end{aligned}$$
(8.3)

In order to obtain the equivalent form of (8.3) considered in Sect. 3, one can make the change of variables

$$\begin{aligned} \lambda \left( t\right) =u^2\left( t\right) , \end{aligned}$$

which leads to

$$\begin{aligned} \dfrac{\mathrm{d}^2 u}{\mathrm{d}t^2}=\dfrac{3u^5}{4}+2tu^3+\left( t^2-\alpha \right) u+\dfrac{\beta }{2u^3}. \end{aligned}$$
(8.4)

1.3 Painlevé III

The Painlevé III equation has the following rational form:

$$\begin{aligned} \dfrac{\mathrm{d}^2\lambda }{\mathrm{d}t^2}=\dfrac{1}{\lambda }\left( \dfrac{\mathrm{d}\lambda }{\mathrm{d}t}\right) ^2-\dfrac{1}{t}\dfrac{\mathrm{d}\lambda }{\mathrm{d}t}+\dfrac{1}{t}\left( \alpha \lambda ^2+\beta \right) +\gamma \lambda ^3+\dfrac{\delta }{\lambda }. \end{aligned}$$
(8.5)

In order to obtain the equivalent form of (8.5) which we use in Sect. 4, one can make the change of variables

$$\begin{aligned} \lambda \left( t\right) =\mathrm{e}^{u\left( t\right) }. \end{aligned}$$

Substituting \( t=\mathrm{e}^{\tau } \) into (8.5), we get

$$\begin{aligned} \dfrac{\mathrm{d}^2 u}{\mathrm{d}t^2}=\alpha \mathrm{e}^{\tau +u}+\beta \mathrm{e}^{\tau -u}+\gamma \mathrm{e}^{2\left( \tau +u\right) }+\delta \mathrm{e}^{2\left( \tau -u\right) }. \end{aligned}$$
(8.6)

Appendix 2: Elliptic Functions

The definitions and properties of elliptic functions used in the paper can be found in [25, 36]. The main object is the theta function defined by

$$\begin{aligned} \theta \left[ \begin{array}{c}a\\ b\end{array}\right] \left( z,\tau \right) =\sum _{j\in \mathbb Z}q^{\frac{1}{2} (j+a)^2}\mathbf {e}\left( (j+a)(z+b)\right) , \end{aligned}$$

where \( q=\mathbf {e}\left( \tau \right) \equiv \exp \left( 2\pi \mathrm{i}\tau \right) \).

We also use the Eisenstein functions

$$\begin{aligned} \varepsilon _k(z)= & {} \lim _{M\rightarrow +\infty }\sum _{n=-M}^M(z+n)^{-k}, \qquad k\in \mathbb {N},\nonumber \\ E_k(z)= & {} \lim _{M\rightarrow +\infty }\sum _{n=-M}^M\varepsilon _k(z+n\tau ). \end{aligned}$$
(9.1)

To determine limits of Lax matrices, we use the series expansions of the following functions:

$$\begin{aligned} \vartheta (z)= & {} \theta \left[ \begin{array}{l} 1/2 \\ 1/2 \end{array}\right] \left( z,\tau \right) =\sum _{j\in \mathbb {Z}}q^{\frac{1}{2}\left( j+\frac{1}{2}\right) ^2}\mathbf {e}\left( \left( j+\dfrac{1}{2}\right) \left( z+\dfrac{1}{2}\right) \right) ,\end{aligned}$$
(9.2)
$$\begin{aligned} \phi (u,z)= & {} \dfrac{\vartheta (u+z)\vartheta '(0)}{\vartheta (u)\vartheta (z)},\nonumber \\ \varphi _{\alpha }\left( u+\omega _{\beta },z\right)= & {} \mathbf {e}\left( z\partial _{\tau }\omega _{\alpha }\right) \phi \left( u+\omega _{\beta },z\right) ,\nonumber \\ f_{\alpha }\left( u+\omega _{\beta },z\right)= & {} \mathbf {e}\left( z\partial _{\tau }\omega _{\alpha }\right) \partial _w\phi \left( w,z\right) |_{w=u+\omega _{\beta }}, \end{aligned}$$
(9.3)

where \( \omega _{\alpha }=\left\{ 0,\frac{1}{2},\frac{\tau }{2},\frac{1+\tau }{2}\right\} \). The functions satisfy the following well-known identities:

$$\begin{aligned} \phi (u,z)\phi (-u,z)= & {} E_2(z)-E_2(u),\nonumber \\ \partial _u\phi (u,z)= & {} \phi (u,z)(E_1(u+z)-E_1(u)), \end{aligned}$$
(9.4)

parity

$$\begin{aligned} E_k(-z)= & {} (-1)^k E_k(z),\\ \vartheta (-z)= & {} -\vartheta (z),\\ \phi (u,z)= & {} \phi (z,u)=-\phi (-u,-z), \end{aligned}$$

and quasi-periodicity

$$\begin{aligned} E_1(z+1)= & {} E_1(z),\quad E_1(z+\tau )=E_1(z)-2\pi \mathrm{i},\nonumber \\ E_2(z+1)= & {} E_2(z),\quad E_2(z+\tau )=E_2(z),\nonumber \\ \vartheta (z+1)= & {} -\vartheta (z),\quad \vartheta (z+\tau )=-q^{-\frac{1}{2}}\mathbf {e}(-z)\vartheta (z),\nonumber \\ \phi (u+1,z)= & {} \phi (u,z),\quad \phi (u+\tau ,z)=\mathbf {e}(-z)\phi (u,z). \end{aligned}$$
(9.5)

Using definition (9.3), we reduce the expansion of \( \varphi _{\alpha }\left( u+\omega _{\beta },z\right) \) to the expansion of theta functions:

$$\begin{aligned} \phi (u-\sigma \tau ,z-\varsigma \tau )=\dfrac{\vartheta (u+z-(\sigma +\varsigma )\tau )\vartheta '(0)}{\vartheta (u-\sigma \tau )\vartheta (z-\varsigma \tau )}, \end{aligned}$$

and for the expansion of theta functions we have:

$$\begin{aligned} \vartheta \left( z+\sigma \tau \right)= & {} \left[ 1+\varvec{o}\left( 1\right) \right] q^{\left( -\left\lfloor \sigma \right\rfloor ^2/2+\frac{1}{8}-\left\lfloor \sigma \right\rfloor \left\{ \sigma \right\} -\left\{ \sigma \right\} /2\right) }\; \mathrm{e}\left( -\left\lfloor \sigma \right\rfloor z-\frac{\left\lfloor \sigma \right\rfloor }{2}\right) \\&\times \left\{ \begin{array}{ll} -2\sin \left( \pi z\right) ,&{}\left\{ \sigma \right\} =0,\\ -\mathrm{i}\;\mathrm{e}\left( -\dfrac{z}{2}\right) ,&{}\left\{ \sigma \right\} >0, \end{array}\right. \end{aligned}$$

where \( \left\lfloor \sigma \right\rfloor \) is the integer part of \( \sigma \) and \( \left\{ \sigma \right\} \) is the fractional part of \(\sigma \). This gives the following answer:

$$\begin{aligned}&\phi (u+\sigma _u\tau ,z+\sigma _z\tau )=\left( 1+\varvec{o}\left( 1\right) \right) \nonumber \\&\times \left\{ \begin{array}{llll} -2\pi \mathrm{i}q^{-\sigma _u\sigma _z+\left\{ \sigma _u\right\} \left\{ \sigma _z\right\} }\mathrm{e}\left( -\left\lfloor \sigma _z\right\rfloor u-\left\lfloor \sigma _u\right\rfloor z\right) ,&{} \left\{ \sigma _u\right\} >0,&{}\left\{ \sigma _z\right\} >0,&{}\left\{ \sigma _u\right\} +\left\{ \sigma _z\right\} <1,\nonumber \\ \begin{array}{l}4\pi q^{-\sigma _u\sigma _z+\left\{ \sigma _u\right\} \left\{ \sigma _z\right\} }\sin \left( \pi \left( u+z\right) \right) \\ \times \mathrm{e}\left( -\left( \frac{1}{2}+\left\lfloor \sigma _z\right\rfloor \right) u-\left( \frac{1}{2}+\left\lfloor \sigma _u\right\rfloor \right) z\right) \end{array},&{} \left\{ \sigma _u\right\} >0,&{}\left\{ \sigma _z\right\} >0,&{}\left\{ \sigma _u\right\} +\left\{ \sigma _z\right\} =1,\nonumber \\ \begin{array}{l}2\pi \mathrm{i}q^{-\sigma _u\sigma _z+\left\{ \sigma _u\right\} \left\{ \sigma _z\right\} -\left\{ \sigma _u+\sigma _z\right\} }\\ \times \mathrm{e}\left( -(1+\left\lfloor \sigma _z\right\rfloor )u-(1+\left\lfloor \sigma _u\right\rfloor )z\right) \end{array},&{} \left\{ \sigma _u\right\} >0,&{}\left\{ \sigma _z\right\} >0,&{}\left\{ \sigma _u\right\} +\left\{ \sigma _z\right\} >1,\\ \pi q^{-\sigma _u\sigma _z}\mathrm{e}\left( -\left\lfloor \sigma _z\right\rfloor u-\sigma _uz\right) \dfrac{\mathrm{e}\left( -\frac{u}{2}\right) }{\sin \left( \pi u\right) },&{} \left\{ \sigma _u\right\} =0,&{}\left\{ \sigma _z\right\} >0,\\ \pi q^{-\sigma _u\sigma _z}\mathrm{e}\left( -\sigma _zu-\left\lfloor \sigma _u\right\rfloor z\right) \dfrac{\mathrm{e}\left( -\frac{z}{2}\right) }{\sin \left( \pi z\right) },&{} \left\{ \sigma _u\right\} >0,&{}\left\{ \sigma _z\right\} =0,\\ \pi q^{-\sigma _u\sigma _z}\mathrm{e}\left( -\sigma _zu-\sigma _uz\right) \dfrac{\sin \left( \pi (u+z)\right) }{\sin \left( \pi z\right) \sin \left( \pi u\right) },&{} \left\{ \sigma _u\right\} =0,&{}\left\{ \sigma _z\right\} =0. \end{array}\right. \end{aligned}$$

To evaluate the limits of \( f_{\alpha }\left( u+\omega _{\beta },z\right) \), we use the identity (9.4) and the expansion of \( E_1(u-\sigma \tau ) \) from [2]:

$$\begin{aligned} E_1(u-\sigma \tau )=2\pi \mathrm{i}\left\lfloor \sigma \right\rfloor +\left\{ \begin{array}{ll} \pi \cot (\pi u)+\varvec{\mathrm o}\left( 1\right) ,&{} \{\sigma \}=0,\\ \pi \mathrm{i}+2\pi \mathrm{i}q^{\{\sigma \}}\varvec{\mathrm{e}}(-u)+\varvec{\mathrm o}\left( q^{\{\sigma \}}\right) ,&{} 0<\{\sigma \}<\dfrac{1}{2},\\ \pi \mathrm{i}+2\pi \mathrm{i}q^{\frac{1}{2}}\left( \varvec{\mathrm{e}}(-u)-\varvec{\mathrm{e}}(u)\right) +\varvec{\mathrm o}\left( q^{\frac{1}{2}}\right) ,&{} \{\sigma \}=\dfrac{1}{2},\\ \pi \mathrm{i}-2\pi \mathrm{i}q^{1-\{\sigma \}}\varvec{\mathrm{e}}\left( u\right) +\varvec{\mathrm o}\left( q^{1-\{\sigma \}}\right) ,&{} \dfrac{1}{2}<\{\sigma \}<1. \end{array}\right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, G., Arthamonov, S. New \(2\times 2\)-Matrix Linear Problems for the Painlevé Equations III, V. Constr Approx 41, 357–383 (2015). https://doi.org/10.1007/s00365-015-9281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9281-7

Keywords

Mathematics Subject Classification

Navigation