Skip to main content
Log in

Multipliers of Hardy Spaces Associated with Generalized Hermite Expansions

  • Published:
Constructive Approximation Aims and scope

Abstract

The purpose of this paper is to study coefficient multipliers of the Hardy spaces \(H^p({\mathbb R})\) associated with Hermite expansions. The main results are that, if a sequence \(\{\lambda _n\}_{n=0}^{\infty }\) satisfies the condition \(\sum _{k=n}^{2n}|\lambda _k|^q=O\left( n^{\frac{q}{2}\left( \frac{7}{6}-\frac{1}{p}\right) }\right) \), then \(\{\lambda _n\}\) is a multiplier of \(H^p({\mathbb R})\) into the sequence space \(\ell ^q\) associated with Hermite expansions for (i) \(p=1\), \(2\le q<\infty \); (ii) \(0<p<1\le q<\infty \). As a consequence, a Paley-type inequality is obtained; that is, for a Hadamard sequence \(\{n_k\}\) satisfying \(n_{k+1}/n_k\ge \rho >1\) and for \(f\in H^p({\mathbb R})\), \(0<p\le 1\), the coefficients \(a_n(f)\) of its Hermite expansion satisfy \(\sum _{k=1}^{\infty }n_k^{\frac{7}{6}-\frac{1}{p}}|a_{n_k}(f)|^2<\infty \). The results in the paper are proved in a more general case, that is, for the generalized Hermite functions which are defined by \({\mathcal {H}}_{2k}^{(\lambda )}(x)=c_kL_k^{(\lambda -1/2)}(x^2)e^{-\frac{x^2}{2}}|x|^{\lambda }\), \({\mathcal {H}}_{2k-1}^{(\lambda )}(x)=c_k k^{-1/2}xL_{k-1}^{(\lambda +1/2)}(x^2)e^{-\frac{x^2}{2}}|x|^{\lambda }\), where \(c_k=\left( 2k!/\Gamma (k+\lambda +1/2)\right) ^{1/2}\). Note that \({\mathcal {H}}_n(x)={\mathcal {H}}_n^{(0)}(x)\) (\(n\ge 0\)) are the usual Hermite functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R., Wainger, S.: Mean convergence of expansions in Laguerre and Hermite series. Amer. J. Math. 87, 695–708 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balasubramanian, R., Radha, R.: Hardy-type inequalities for Hermite expansions. J. Inequal. Pure Appl. Math 6, 1–4 (2005)

    MathSciNet  Google Scholar 

  3. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  4. Colzani, L., Travaglini, G.: Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds. Colloq. Math. 58, 305–316 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duren, P.L.: Theory of \(H^p\) Spaces. Academic Press Inc, New York (1970)

  7. Duren, P.L., Shields, A.L.: Coefficient multipliers of \(H^p\) and \(B^p\) spaces. Pacific. J. Math. 32, 69–78 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hardy, G.H., Littlewood, J.E.: Notes on the theory of series (XX): Generalizations of a theorem of Paley. Quart. J. Math. 8, 161–171 (1937)

    Article  Google Scholar 

  9. Hardy, G.H., Littlewood, J.E.: Theorems concerning mean values of analytic or harmonic functions. Quart. J. Math. 12, 221–256 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kanjin, Y.: Hardy’s inequalities for Hermite and Laguerre expansions. Bull. London Math. Soc. 29, 331–337 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kanjin, Y.: Hardy’s inequalities for Hermite and Laguerre expansions revisited. J. Math. Soc. Jpn 63, 753–767 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kanjin, Y., Sato, K.: Paley’s inequality for the Jacobi expansions. Bull. London Math. Soc. 33, 483–491 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kanjin, Y., Sato, K.: Hardy’s inequality for Jacobi expansions. Math. Inequal. Appl. 7, 551–555 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Li, Zh.-K., Liu, L.-M.: Uncertainty principles for Sturm-Liouville operators. Constr. Approx. 21, 193–205 (2005)

    Google Scholar 

  15. Muckenhoupt, B.: Asymptotic forms for Laguerre polynomials. Proc. Am. Math. Soc. 24, 288–292 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  16. Muckenhoupt, B., Webb, D.W.: Two-weight norm inequalities for Cesàro means of Laguerre expansions. Trans. Am. Math. Soc. 353, 1119–1149 (2000)

    Article  MathSciNet  Google Scholar 

  17. Radha, R., Thangavelu, S.: Hardy’s inequalities for Hermite and Laguerre expansions. Proc. Am. Math. Soc. 132, 3525–3536 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillator calculus, In ”Operator Theory: Advances and Applications”, vol. 73, pp. 369–396. Birkhäuser Verlag, Basel (1994).

  19. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys. 192, 519–542 (1998)

    Article  MATH  Google Scholar 

  20. Satake, M.: Hardy’s inequalities for Laguerre expansions. J. Math. Soc. Jpn 52, 17–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sledd, W.T.: On multipliers of \(H^p\) spaces. Indiana Univ. Math. J. 27, 797–803 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  24. Stein, E.M., Zygmund, A.: Boundedness of translation invariant operators on Hölder spaces and \(L^{p}\)-spaces. Ann. Math. 85, 337–349 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  25. Szegö, G.: Orthogonal Polynomials, 4th ed., Am. Math. Soc. Colloq. Publ., vol. 23. Providence. RI. (1975).

  26. Thangavelu, S.: On regularity of twisted spherical means and special Hermite expansion. Proc. Indian. Acad. Sci. Math. Sci. 103, 303–320 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press Inc, Orlando (1986)

    MATH  Google Scholar 

  28. Uchiyama, A.: Hardy Spaces on the Euclidean Space. Springer-Verlag. (2001).

  29. Walsh, T.: The dual of \(H^p(\mathbb{R}^{n+1}_{+} )\) for \(p<1\). Can. J. Math. 25, 567–577 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and suggestions, which have improved the original manuscript. This research was supported by the National Natural Science Foundation of China (No. 11371258), and the Beijing Natural Science Foundation (No. 1122011)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkai Li.

Additional information

Communicated by Yuan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shi, Y. Multipliers of Hardy Spaces Associated with Generalized Hermite Expansions. Constr Approx 39, 517–540 (2014). https://doi.org/10.1007/s00365-014-9230-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9230-x

Keywords

Mathematics Subject Classification

Navigation