Skip to main content
Log in

A spectral multiplier theorem for Hardy spaces associated with Schrödinger operator on the Heisenberg group

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Let \(\{T_t\}_{t>0}\) be the semigroup of linear operators generated by a Schrödinger operator \({\mathcal {L}}=-\Delta _{{\mathbb {H}}^n}+V\) on Heisenberg group \({\mathbb {H}}^n\), where \(\Delta _{{\mathbb {H}}^n}\) is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class \(B_{Q/2}\) and Q is the homogeneous dimension of \({\mathbb {H}}^n\). Let \(\int _0^{\infty } \uplambda dE_{{\mathcal {L}}}(\uplambda )\) be the spectral resolution of \({\mathcal {L}}\), we prove that if a function F satisfies a Mihlin condition with exponent \(\alpha >Q/2\) then the operator \(F({\mathcal {L}})=\int _0^\infty F(\uplambda )dE_{{\mathcal {L}}}(\uplambda )\) is bounded on Hardy space \(H_{{\mathcal {L}}}^1({{\mathbb {H}}^n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Am. Math. Soc. 120(3), 973–979 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besov, O.V.: Hörmander’s theorem on Fourier multipliers. Trudy Mat. Inst. Steklov. 173(270), 3–13 (1986)

  3. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution II. Adv. Math. 24(2), 101–171 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Huang, L.: Hörmander type multipliers on anisotropic Hardy spaces. Acta Math. Sin. Engl. Ser. 35(11), 1841–1853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, P., Ouhabaz, E.M., Sikora, A., Yan, L.X.: Spectral multipliers without semigroup framework and application to random walks. J. Math. Pures Appl. 143(9), 162–191 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christ, M.: \(L^p\) bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328(1), 73–81 (1991)

    MATH  Google Scholar 

  7. Christ, M., Müller, D.: On \(L^p\) spectral multipliers for a solvable Lie group. Geom. Funct. Anal. 6(5), 860–876 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman, R.R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coifman, R.R., Meyer, Y.: Au delá des opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978)

  10. Courant, R., Hilbert, D.: Methods of mathematical physics, vol I. Phys. Today 7, 17 (1954)

    Article  Google Scholar 

  11. De Michele, L., Mauceri, G.: \(H^p\) multipliers on stratified groups. Ann. Mat. Pura Appl. 148(4), 353–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duong, X.T., Yan, L.X.: Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. J. Math. Soc. Jpn. 63(1), 295–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dziubański, J.: A spectral multiplier theorem for \(H^1\) associated with Schrödinger operators with potentials satisfying a reverse Hölder inequality. Ill. J. Math. 45(4), 1301–1313 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Fang, J.X., Li, H.B., Zhao, J.M.: Multilinear spectral multiplier on Lie groups of polynomial growth. J. Geom. Anal. 31(7), 7386–7409 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, J.X., Zhao, J.M.: Multilinear and multiparameter spectral multipliers on stratified groups. Math. Methods Appl. 41(13), 5327–5344 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, J.X., Zhao, J.M.: \(H^p\) boundedness of multilinear spectral multipliers on stratified groups. J. Geom. Anal. 30(1), 197–222 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, J.X., Zhao, J.M.: Bilinear square spectral multipliers on stratified groups. J. Psseudo-Differ. Oper. Appl. 11(1), 267–288 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univiversity Press, Princeton (1982)

    MATH  Google Scholar 

  19. Fujita, M., Tomita, N.: Weighted norm inequalities for multilinear Fourier multipliers. Trans. Am. Math. Soc. 364(12), 6335–6353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxfold University Press, New York (1985)

    MATH  Google Scholar 

  21. Grafakos, L., He, D.Q., Van Nguyen, H., Yan, L.X.: Multilinear multiplier theorems and applications. J. Four. Anal. Appl. 25(3), 959–994 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hebisch, W.: Functional calculus for slowly decaying kernels (1995) (preprint)

  23. Hilbert, D.: Grundzüge Einer Allgemeinen Theorie der Linearen Integralgleichungen (German). Chelsea Publishing Company, New York, pp. xxvi+282 (1953)

  24. Hörmander, L.: Estimates for translation invariant operators on \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hulanicki, A., Stein, E.M.: Marcinkiewicz multiplier theorem for stratified groups (unpublished manuscript)

  26. Li, W.J., Xue, Q.Y., Yabuta, K.: Weighted version of Carleson measure and multilinear Fourier multiplier. Forum Math. 27(2), 787–805 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Li, Z.Y., Xue, Q.Y.: On the bilinear square Fourier multiplier operators associated with \(g^{*}_{\lambda }\) function. Nagoya Math. J. 239, 123–152 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lin, C.-C., Liu, H.P., Liu, Y.: Hardy spaces associated with Schrödinger operators on the Heisenberg group. arXiv:1106.4960

  29. Lu, G.Z.: A Fefferman–Phong type inequality for degenerate vector fields and applications. Pan Am. Math. J. 6(4), 37–57 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Lu, S.Z., Yang, D.C., Zhou, Z.S.: Some multiplier theorems for non-isotropic \(H^p({\mathbb{R}}^n)\). J. Beijing Norm. Univ. 33(1), 1–9 (1997)

    MATH  Google Scholar 

  31. Marcinkiewicz, J.: Sur les multiplicateurs des séries de Fourier. Studia Math. 8, 78–91 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mauceri, G., Meda, S.: Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6(3–4), 141–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mihlin, S.G.: On the multipliers of Fourier intergrals. Dokl. Akad. Nauk SSSR 109(2), 701–703 (1956)

    MathSciNet  Google Scholar 

  34. Miyachi, A.: On some Fourier multipliers for \(H^p\). J. Fac. Sci. Univer. Tokyo Sect. IA Math. 27(1), 157–179 (1980)

    MATH  Google Scholar 

  35. Miyachi, A.: On some singular Fourier multipliers. J. Fac. Sci. Univer. Tokyo Sect. IA Math. 28(2), 267–315 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Miyachi, A., Tomita, N.: Minimal smoothness conditions for bilinear Fourier multipliers. Rev. Mat. Iberoam. 29(2), 495–530 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Noi, T.: Fourier multiplier theorems for Besov and Triebel–Lizorkin spaces with variable exponents. Math. Inequal. Appl. 17(1), 49–74 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Qiang, J.R., Chen, P., Huang, S.L., Zheng, Q.: On some Fourier multipliers for \(H^p({\mathbb{R}}^n)\) with restricted smoothness conditions. J. Geom. Anal. 30(2), 3672–3697 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, Z.W.: On the Neumann problem for Schrödinger operators in Lipschitz domains. Indiana Univer. Math. J. 43(1), 143–176 (1994)

    Article  MATH  Google Scholar 

  40. Shen, Z.W.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier 45(2), 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sikora, A., Yan, L.X., Yao, X.H.: Sharp spectral multipliers for operators satisfying generalized Gaussian estimates. J. Funct. Anal. 266(1), 368–409 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sikora, A., Yan, L.X., Yao, X.H.: Spectral multipliers, Bochner–Riesz means and uniform Sobolev inequalities for elliptic operators. Int. Math. Res. Not. 2018(10), 3070–3121 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Song, N.Q., Liu, H.P., Zhao, J.M.: Bilinear spectral multipliers on Heisenberg groups. Acta Math. Sci. Ser. B Engl. Ed. 41(3), 968–990 (2021)

    Article  MathSciNet  Google Scholar 

  44. Thangavelu, S.: Harmonic analysis on the Heisenberg group. In: Progr. Math., vol. 159. Birkhäuser, Boston, xiv+192 pp (1998)

  45. Tomita, N.: A Hörmander type multiplier theorem for multilinear operators. J. Funct. Anal. 259(8), 2028–2044 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yabuta, K.: Multilinear Littlewood-Paley operators and multilinear Fourier multipliers. Sūrikaisekikenkyūsho Kōkyūroku 1235, 54–60 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Yang, D.C., Yuan, W., Zhuo, C.Q.: Fourier multipliers on Triebel–Lizorkin-type spaces. J. Funct. Spaces Appl. 2012, 1–37 (2014)

    MATH  Google Scholar 

  48. Zhao, G.P., Chen, J.C., Fan, D.S., Guo, W.C.: Unimodular Fourier multipliers on homogeneous Besov spaces. J. Math. Anal. Appl. 425(1), 536–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhong, J.P.: Harmonic analysis for Schrödinger type operators. Ph.D. Thesis, Princeton University (1993)

Download references

Acknowledgements

The authors would like to thank Professor Heping Liu for some helpful advice and to express sincere thanks to the referees for the valuable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiman Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiman Zhao: The corresponding author, supported by the National Key Research and Development Program of China (Grant No. 2020YFA0712900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Zhao, J. A spectral multiplier theorem for Hardy spaces associated with Schrödinger operator on the Heisenberg group. J. Pseudo-Differ. Oper. Appl. 13, 5 (2022). https://doi.org/10.1007/s11868-021-00435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-021-00435-6

Keywords

Mathematics Subject Classification

Navigation