Skip to main content
Log in

The generalized preliminary test estimator when different sets of stochastic restrictions are available

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Arumairajan and Wijekoon (Commun Stat—Theor Methods, in press, 2014) proposed a generalized preliminary test stochastic restricted estimator (GPTSRE) to represent the preliminary test estimators when stochastic restrictions are available in addition to sample model. The aim of this paper is to define the GPTSRE when two different sets of competing stochastic restrictions are available. Moreover the conditions for superiority of GPTSRE based on one stochastic restriction over the other are derived with respect to mean square error (MSE) matrix criterion. Furthermore the estimator GPTSRE is theoretically compared with almost unbiased ridge estimator and almost unbiased Liu estimator in the MSE matrix sense. Finally a Monte Carlo simulation study and numerical example are done to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akdeniz F, Erol H (2003) Mean squared error matrix comparisons of some biased estimators in linear regression. Commun Stat-Theor Methods 32:2389–2413

    Article  MathSciNet  MATH  Google Scholar 

  • Akdeniz F, Kaçiranlar S (1995) On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE. Commun Stat—Theor Methods 34:1789–1797

    Article  MathSciNet  MATH  Google Scholar 

  • Alheety MI, Kibria BMG (2013) Modified Liu-type estimator based on (r- k) class estimator. Commun Stat-Theor Methods 42:304–319

    Article  MathSciNet  MATH  Google Scholar 

  • Alheety MI, Ramanathan TV, Gore SD (2009) On the distribution of shrinkage parameters of Liu-type estimators. Braz J Probab Stat 23:57–67

    Article  MathSciNet  MATH  Google Scholar 

  • Arashi M, Kibria BM, Golam Norouzirad M, Nadarajah S (2014) Improved preliminary test and stein-rule Liu estimators for the ill-conditioned elliptical linear regression model. J Multivar Anal 124:53–74

    Article  MathSciNet  MATH  Google Scholar 

  • Arashi M, Tabatabaey SMM, Iranmanesh Anis (2010) Improved estimation in stochastic linear models under elliptical symmetry. J Appl Probab Stat 5:145–160

    Google Scholar 

  • Arashi M, Valizadeh T (2015) Performance of Kibria’s methods in partial linear ridge regression model. Stat Pap 56:231–246

    Article  MathSciNet  MATH  Google Scholar 

  • Arumairajan S, Wijekoon P (2013) Improvement of the preliminary test estimator when stochastic restrictions are available in linear regression model. Open J Stat 3:283–292

    Article  Google Scholar 

  • Arumairajan S, Wijekoon P (2014) Generalized preliminary test stochastic restricted estimator in the linear regression model. Commun Stat—Theor Methods (in press)

  • Baksalary JK, Trenkler G (1991) Nonnegative and positive definiteness of matrices modified by two matrices of rank one. Linear Algebr Its Appl 151:169–184

    Article  MathSciNet  MATH  Google Scholar 

  • Bancroft A (1944) On biases in estimation due to use of preliminary tests of significance. Ann Math Stat 15:190–204

    Article  MathSciNet  MATH  Google Scholar 

  • Danilov D, Magnus R (2004) On the harm that ignoring pretesting can cause. J Econ 122:27–46

    Article  MathSciNet  MATH  Google Scholar 

  • Freund E, Trenkler G (1986) Mean square error comparisons between mixed estimators. Stat Anno 46:493–501

    MathSciNet  MATH  Google Scholar 

  • Gruber MHJ (1998) Improving efficiency by shrinkage: the James–Stein and ridge regression estimators. Dekker Inc, New York

    MATH  Google Scholar 

  • Hassanzadeh Bashtian M, Arashi M, Tabatabaey SMM (2011) Ridge estimation under the stochastic restriction. Commun Stat—Theor Methods 40:3711–3747

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl E, Kennard W (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  MATH  Google Scholar 

  • Hubert MH, Wijekoon P (2006) Improvement of the Liu estimator in linear regression model. Stat Pap 47:471–479

    Article  MathSciNet  MATH  Google Scholar 

  • Judge G, Bock E (1978) The statistical implications of pre-test and stein-rule estimators in econometrics. North Holland, New York

    MATH  Google Scholar 

  • Kacıranlar S, Sakallıoǧlu S, Akdeniz F, Styan GPH, Werner HJ (1999) A new biased estimator in linear regression and a detailed analysis of the widely analyzed dataset on Portland cement. Sankhyā Ser B 61:443–459

    Google Scholar 

  • Li Y, Yang H (2010) A new stochastic mixed ridge estimator in linear regression. Stat Pap 51:315–323

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Yang H (2011) Two kinds of restricted modified estimators in linear regression model. J Appl Stat 38:1447–1454

    Article  MathSciNet  Google Scholar 

  • Liski EP (1986) Comparing stochastically restricted linear estimators in a linear regression model. Biom J 31:313–316

    Article  MathSciNet  MATH  Google Scholar 

  • Liu K (1993) A new class of biased estimate in linear regression. Commun Stat-Theor Methods 22:393–402

    Article  MathSciNet  MATH  Google Scholar 

  • McDonald C, Galarneau A (1975) A Monte Carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70:407–416

    Article  MATH  Google Scholar 

  • Newhouse JP, Oman SD (1971). An evaluation of ridge estimators. Rand Report, No. R-716-Pr: pp. 1–28

  • Saleh AKMD, Ehsanes Arashi M, Tabatabaey SMM (2014) Statistical inference for models with multivariate t-distributed errors. Wiley, New York

    MATH  Google Scholar 

  • Singh B, Chaubey YP, Dwivedi TD (1986) An almost unbiased ridge estimator. Sankhya 48:342–346

    MathSciNet  MATH  Google Scholar 

  • Teräsvirta T (1981) Some results on improving the least squares estimation of linear models by mixed estimation. Scand J Stat 8:33–38

    MathSciNet  MATH  Google Scholar 

  • Theil H, Goldberger AS (1961) On pure and mixed estimation in economics. Int Econ Rev 2:65–77

    Article  Google Scholar 

  • Trenkler G (1993) A note on comparing stochastically restricted liner estimators in linear regression. Biom J 35:125–128

    Article  MATH  Google Scholar 

  • Trenkler G, Toutenburg H (1990) Mean square error matrix comparisons between biased estimators-an overview of recent results. Stat Pap 31:165–179

    Article  MATH  Google Scholar 

  • Wang SG et al (2006) Matrix inequalities, 2nd edn. Chinese Science Press, Beijing

    Google Scholar 

  • Wijekoon P (1990). Mixed estimation and preliminary test estimation in the linear regression model. Ph.D. Thesis, University of Dortmund

  • Wu JB, Yang H (2014) On the stochastic restricted almost unbiased estimators in linear regression model. Commun Stat—Simul Comput 43:428–440

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees and the Editor for their valuable comments and suggestions which helped to improve the quality of the article. We also thank the Postgraduate Institute of Science, University of Peradeniya, Sri Lanka for providing all facilities to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivarajah Arumairajan.

Appendix

Appendix

Lemma 1

Wang et al. (2006) Let \(n\times n\) matrices \(M>0\), \(N>0\) (or \(N\ge 0)\), then \(M>N\) if and only if \(\lambda _1 ( {NM^{-1}})<1\).where \(\lambda _1 ( {NM^{-1}})\) is the largest eigenvalue of the matrix \(NM^{-1}\).

Lemma 2

Trenkler and Toutenburg (1990) Let \(\hat{\beta }_1 \) and \(\hat{\beta }_2 \) be two linear estimator of \(\beta \). Suppose that \(D=D( {\hat{\beta }_1 })-D( {\hat{\beta }_2 })\) is positive definite then \(\Delta =MSE( {\hat{\beta }_1 })-MSE( {\hat{\beta }_2 })\) is nonnegative definite if and only if \({b}'_2 ( {D+b_1 {b}'_1 })^{-1}b_2 \le 1\), where \(b_j \) denotes the bias vector of \(\hat{\beta }_j,j=1,2.\)

Lemma 3

Baksalary and Trenkler (1991) Let C be a nonnegative definite matrix and \(c_1 \), \(c_2 \) be linearly independent vectors. Furthermore for some generalized inverse \(C^-\) of C, let \(f_{ij} ={c}'_i C^-c_j \); \(i=1,2,\,j=1,2\) and let

$$\begin{aligned} s=\frac{{c}'_2 (I-CC^-{)}'(I-CC^-)c_2 }{{c}'_1 (I-CC^-)(I-CC^-)c_1 } \end{aligned}$$

where \(c_1{\,\in \,}\mathfrak {R}(C)\) and \(\mathfrak {R}(.)\) denote the column space of the corresponding matrix. Then we have \(C+c_1 {c}'_1 -c_2 {c}'_2 \ge 0\) if and only if

  1. (a)

    \(c_1 \in \mathfrak {R}(C),\,c_2 \in \mathfrak {R}(C)\) and \((f_{11} +1)(f_{22} -1)\le f_{12}^2 \) or

  2. (b)

    \(c_1 \notin \mathfrak {R}(C),\,c_2 \in \mathfrak {R}(C,c_1 )\) and \((c_2 -sc_1 {)}'C^-(c_2 -sc_1 )\le 1-s^2\)

and all expressions in (a) and (b) are independent of the choice of \(C^-\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumairajan, S., Wijekoon, P. The generalized preliminary test estimator when different sets of stochastic restrictions are available. Stat Papers 58, 729–747 (2017). https://doi.org/10.1007/s00362-015-0723-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0723-x

Keywords

Mathematics Subject Classification

Navigation