Skip to main content

Skeletal Muscle Tissue Changes with Hypoxia

  • Chapter
  • First Online:
High Altitude

Abstract

This review summarizes results of research into the effect on skeletal muscle tissue of prolonged exposure to high (3,000–5,500 m) and extreme altitude (>5,500 m). There is consensual evidence that continued sojourn at these altitudes has a number of negative consequences to muscle tissue. There is a loss of muscle mass related to a decrease of individual muscle fiber cross-sectional area. There is also a relative and absolute decrease in muscle oxidative capacity which manifests itself as a decrease in mitochondrial volume as well as a decrease in oxidative enzyme activities. The capillary to fiber ratio is maintained in hypoxia with the consequence that, without capillary neoformation, the oxygen supply of remaining mitochondria is improved. There is further a massive increase in lipofuscin, a lipid peroxidation product. Hypoxia activates defensive cellular mechanisms, among them the well-characterized response to the hypoxic master gene HIF (hypoxia-inducible factor). Reactive oxygen species (ROS) abound under hypoxic conditions and are further responsible for the orchestration of the hypoxia response. The permanent hypoxic stress of living at high altitude has led to a number of disparate but effective phylogenetic adaptations in native high-altitude populations, Tibetans and Quechua. When hypoxia is used as an adjunct limited to exercise training sessions, skeletal muscle tissue responds with a specific molecular signature. The functional consequences of which may offer benefits for competition at altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pugh LG, Gill MB, Lahiri S, et al. Muscular exercise at great altitudes. J Appl Physiol. 1964;19:431–40.

    PubMed  CAS  Google Scholar 

  2. Valdivia E. Total capillary bed in striated muscles of guinea pigs native to the Peruvian mountains. Am J Physiol. 1958;194:585–9.

    PubMed  CAS  Google Scholar 

  3. Reynafarje B. Myoglobin content and enzymatic activity of muscle and altitude adaptation. J Appl Physiol. 1962;17:301–5.

    PubMed  CAS  Google Scholar 

  4. Hochachka PW, Stanley C, Merkt J, et al. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Respir Physiol. 1983;52:303–13.

    Article  PubMed  CAS  Google Scholar 

  5. Banchero N. Cardiovascular responses to chronic hypoxia. Annu Rev Physiol. 1987;49:465–76.

    Article  PubMed  CAS  Google Scholar 

  6. Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol. 1976;38:273–91.

    Article  PubMed  CAS  Google Scholar 

  7. Himms-Hagen J, Cerf J, Desautels M, et al. Thermogenic mechanisms and their control. Experientia Suppl. 1978;32:119–34.

    Article  PubMed  CAS  Google Scholar 

  8. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    PubMed  CAS  Google Scholar 

  9. Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006;272:2–8. discussion 8−14, 33–6.

    Article  PubMed  CAS  Google Scholar 

  10. Semenza GL. Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2010;2:336–61.

    Article  PubMed  CAS  Google Scholar 

  11. Cerretelli P. Limiting factors to oxygen transport on Mount Everest. J Appl Physiol. 1976;40:658–67.

    PubMed  CAS  Google Scholar 

  12. Ferretti G. Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli’s contribution to the study of altitude physiology. Eur J Appl Physiol. 2003;90:344–50.

    Article  PubMed  CAS  Google Scholar 

  13. Hoppeler H, Luthi P, Claassen H, et al. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973;344:217–32.

    Article  PubMed  CAS  Google Scholar 

  14. Cerretelli P, Hoppeler H. Morphologic and metabolic response to chronic hypoxia: the muscle system. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology, section 4, environmental physiology, vol. 2. New York: Oxford University Press; 1996. p. 1155–81.

    Google Scholar 

  15. Bartsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18 Suppl 1:1–10.

    Article  PubMed  Google Scholar 

  16. Hoppeler H, Howald H, Cerretelli P. Human muscle structure after exposure to extreme altitude. Experientia. 1990;46:1185–7.

    Article  PubMed  CAS  Google Scholar 

  17. Butterfield GE, Gates J, Fleming S, et al. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.

    PubMed  CAS  Google Scholar 

  18. Kayser B, Narici M, Milesi S, et al. Body composition and maximum alactic anaerobic performance during a one month stay at high altitude. Int J Sports Med. 1993;14:244–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kayser B, Acheson K, Decombaz J, et al. Protein absorption and energy digestibility at high altitude. J Appl Physiol. 1992;73:2425–31.

    PubMed  CAS  Google Scholar 

  20. Westerterp KR, Meijer EP, Rubbens M, et al. Operation Everest III: energy and water balance. Pflugers Arch. 2000;439:483–8.

    Article  PubMed  CAS  Google Scholar 

  21. Tschop M, Morrison KM. Weight loss at high altitude. Adv Exp Med Biol. 2001;502:237–47.

    Article  PubMed  CAS  Google Scholar 

  22. Raguso CA, Guinot SL, Janssens JP, et al. Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude. Curr Opin Clin Nutr Metab Care. 2004;7:411–7.

    Article  PubMed  CAS  Google Scholar 

  23. Grosfeld A, Zilberfarb V, Turban S, et al. Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia. 2002;45:527–30.

    Article  PubMed  CAS  Google Scholar 

  24. Tschop M, Strasburger CJ, Hartmann G, et al. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet. 1998;352:1119–20.

    Article  PubMed  CAS  Google Scholar 

  25. Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157: 733–40.

    Article  PubMed  CAS  Google Scholar 

  26. Hoppeler H, Kleinert E, Schlegel C, et al. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med. 1990;11 Suppl 1:S3–9.

    Article  PubMed  Google Scholar 

  27. MacDougall JD, Green HJ, Sutton JR, et al. Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand. 1991;142:421–7.

    Article  PubMed  CAS  Google Scholar 

  28. Mizuno M, Savard GK, Areskog NH, et al. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol. 2008;9:311–7.

    Article  PubMed  CAS  Google Scholar 

  29. Vigano A, Ripamonti M, De Palma S, et al. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics. 2008;8:4668–79.

    Article  PubMed  CAS  Google Scholar 

  30. Baar K, Nader G, Bodine S. Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem. 2006;42:61–74.

    Article  PubMed  CAS  Google Scholar 

  31. Holm L, Haslund ML, Robach P, et al. Skeletal muscle myofibrillar and sarcoplasmic protein synthesis rates are affected differently by altitude-induced hypoxia in native lowlanders. PLoS One. 2010;5:e15606.

    Article  PubMed  CAS  Google Scholar 

  32. Murray AJ. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med. 2009;1:117.

    Article  PubMed  Google Scholar 

  33. Green HJ, Sutton JR, Cymerman A, et al. Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol. 1989;66:2454–61.

    PubMed  CAS  Google Scholar 

  34. Takahashi H, Kikuchi K, Nakayama H. Effect of chronic hypoxia on skeletal muscle fiber type in adult male rats. Ann Physiol Anthropol. 1992;11:625–30.

    Article  PubMed  CAS  Google Scholar 

  35. Doria C, Toniolo L, Verratti V, et al. Improved VO2 uptake kinetics and shift in muscle fiber type in high-altitude trekkers. J Appl Physiol. 2011;111:1597–605.

    Article  PubMed  CAS  Google Scholar 

  36. Whittom F, Jobin J, Simard PM, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 1998;30:1467–74.

    Article  PubMed  CAS  Google Scholar 

  37. Pereira MC, Isayama RN, Seabra JC, et al. Distribution and morphometry of skeletal muscle fibers in patients with chronic obstructive pulmonary disease and chronic hypoxemia. Muscle Nerve. 2004;30:796–8.

    Article  PubMed  Google Scholar 

  38. Gosker HR, Zeegers MP, Wouters EF, et al. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax. 2007;62: 944–9.

    Article  PubMed  Google Scholar 

  39. Saltin B, Nygaard E, Rasmussen B. Skeletal muscle adaptation in man following prolonged exposure to high altitude (abstract). Acta Physiol Scand. 1998; 109:31A.

    Google Scholar 

  40. Breen E, Tang K, Olfert M, et al. Skeletal muscle capillarity during hypoxia: VEGF and its activation. High Alt Med Biol. 2008;9:158–66.

    Article  PubMed  CAS  Google Scholar 

  41. Olfert IM, Breen EC, Mathieu-Costello O, et al. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol. 2001;91:1176–84.

    PubMed  CAS  Google Scholar 

  42. Lundby C, Pilegaard H, Andersen JL, et al. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. J Exp Biol. 2004;207:3865–71.

    Article  PubMed  CAS  Google Scholar 

  43. Mathieu-Costello O. Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism. High Alt Med Biol. 2001;2:413–25.

    Article  PubMed  CAS  Google Scholar 

  44. Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125:2549–57.

    Article  PubMed  Google Scholar 

  45. Howald H, Pette D, Simoneau JA, et al. Effect of chronic hypoxia on muscle enzyme activities. Int J Sports Med. 1990;11 Suppl 1:S10–4.

    Article  PubMed  Google Scholar 

  46. Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91:173–82.

    PubMed  CAS  Google Scholar 

  47. Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100:1258–66.

    Article  PubMed  CAS  Google Scholar 

  48. Chavez A, Miranda LF, Pichiule P, et al. Mitochondria and hypoxia-induced gene expression mediated by hypoxia-inducible factors. Ann N Y Acad Sci. 2008; 1147:312–20.

    Article  PubMed  CAS  Google Scholar 

  49. Taylor CT. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J. 2008;409:19–26.

    Article  PubMed  CAS  Google Scholar 

  50. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.

    Article  CAS  Google Scholar 

  51. Zhang JZ, Behrooz A, Ismail-Beigi F. Regulation of glucose transport by hypoxia. Am J Kidney Dis. 1999;34:189–202.

    Article  PubMed  CAS  Google Scholar 

  52. Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol. 2003;206:2911–22.

    Article  PubMed  CAS  Google Scholar 

  53. Katz A. Modulation of glucose transport in skeletal muscle by reactive oxygen species. J Appl Physiol. 2007;102:1671–6.

    Article  PubMed  CAS  Google Scholar 

  54. Martinelli M, Winterhalder R, Cerretelli P, et al. Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans. Experientia. 1990;46:672–6.

    Article  PubMed  CAS  Google Scholar 

  55. Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology. 2002;180:107–19.

    Article  PubMed  CAS  Google Scholar 

  56. Terman A, Brunk UT. Lipofuscin. Int J Biochem Cell Biol. 2004;36:1400–4.

    Article  PubMed  CAS  Google Scholar 

  57. Rajawat YS, Hilioti Z, Bossis I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev. 2009;8:199–213.

    Article  PubMed  CAS  Google Scholar 

  58. Allaire J, Maltais F, LeBlanc P, et al. Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve. 2002;25:383–9.

    Article  PubMed  Google Scholar 

  59. Koechlin C, Maltais F, Saey D, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax. 2005;60: 834–41.

    Article  PubMed  CAS  Google Scholar 

  60. Hurtado A, Rotta A, Merino C, et al. Studies of my hemoglobin at high altitudes. Am J Med Sci. 1937; 194:708–13.

    Article  CAS  Google Scholar 

  61. Conley KE, Ordway GA, Richardson RS. Deciphering the mysteries of myoglobin in striated muscle. Acta Physiol Scand. 2000;168:623–34.

    Article  PubMed  CAS  Google Scholar 

  62. Garry DJ, Kanatous SB, Mammen PP. Emerging roles for myoglobin in the heart. Trends Cardiovasc Med. 2003;13:111–6.

    Article  PubMed  CAS  Google Scholar 

  63. Wystub S, Ebner B, Fuchs C, et al. Interspecies comparison of neuroglobin, cytoglobin and myoglobin: sequence evolution and candidate regulatory elements. Cytogenet Genome Res. 2004;105:65–78.

    Article  PubMed  CAS  Google Scholar 

  64. Kanatous SB, Mammen PP, Rosenberg PB, et al. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am J Physiol Cell Physiol. 2009;296:C393–402.

    Article  PubMed  CAS  Google Scholar 

  65. Masuda K, Okazaki K, Kuno S, et al. Endurance training under 2500-m hypoxia does not increase myoglobin content in human skeletal muscle. Eur J Appl Physiol. 2001;85:486–90.

    Article  PubMed  CAS  Google Scholar 

  66. Pattengale PK, Holloszy JO. Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am J Physiol. 1967;213:783–5.

    PubMed  CAS  Google Scholar 

  67. Juel C, Lundby C, Sander M, et al. Human skeletal muscle and erythrocyte proteins involved in acid–base homeostasis: adaptations to chronic hypoxia. J Physiol. 2003;548:639–48.

    Article  PubMed  CAS  Google Scholar 

  68. Desplanches D, Hoppeler H, Tuscher L, et al. Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia. J Appl Physiol. 1996;81:1946–51.

    PubMed  CAS  Google Scholar 

  69. Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol. 1985;59:320–7.

    PubMed  CAS  Google Scholar 

  70. Rosler K, Hoppeler H, Conley KE, et al. Transfer effects in endurance exercise. Adaptations in trained and untrained muscles. Eur J Appl Physiol Occup Physiol. 1985;54:355–62.

    Article  PubMed  CAS  Google Scholar 

  71. Elder GC, Bradbury K, Roberts R. Variability of fiber type distributions within human muscles. J Appl Physiol. 1982;53:1473–80.

    PubMed  CAS  Google Scholar 

  72. Favier R, Spielvogel H, Desplanches D, et al. Maximal exercise performance in chronic hypoxia and acute normoxia in high-altitude natives. J Appl Physiol. 1995;78:1868–74.

    PubMed  CAS  Google Scholar 

  73. Hochachka PW, Gunga HC, Kirsch K. Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci U S A. 1998;95:1915–20.

    Article  PubMed  CAS  Google Scholar 

  74. Aldenderfer MS. Moving up the world: archeologists seek to understand how and when people came to occupy the Andean and Tibetan plateaus. Am Sci. 2003;91:542–9.

    Google Scholar 

  75. Beall CM. Detecting natural selection in high-altitude human populations. Respir Physiol Neurobiol. 2007;158:161–71.

    Article  PubMed  Google Scholar 

  76. Wu TY. Chronic mountain sickness on the Qinghai-Tibetan plateau. Chin Med J (Engl). 2005;118:161–8.

    Google Scholar 

  77. van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2alpha. High Alt Med Biol. 2011;12:157–67.

    Article  PubMed  Google Scholar 

  78. Kayser B, Hoppeler H, Desplanches D, et al. Muscle ultrastructure and biochemistry of lowland Tibetans. J Appl Physiol. 1996;81:419–25.

    PubMed  CAS  Google Scholar 

  79. Rosser BW, Hochachka PW. Metabolic capacity of muscle fibers from high-altitude natives. Eur J Appl Physiol Occup Physiol. 1993;67:513–7.

    Article  PubMed  CAS  Google Scholar 

  80. Kayser B, Hoppeler H, Claassen H, et al. Muscle structure and performance capacity of Himalayan Sherpas. J Appl Physiol. 1991;70:1938–42.

    Article  PubMed  CAS  Google Scholar 

  81. Marconi C, Marzorati M, Grassi B, et al. Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol. 2004; 556:661–71.

    Article  PubMed  CAS  Google Scholar 

  82. Gelfi C, De Palma S, Ripamonti M, et al. New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J. 2004;18:612–4.

    PubMed  CAS  Google Scholar 

  83. Levine BD. Intermittent hypoxic training: fact and fancy. High Alt Med Biol. 2002;3:177–93.

    Article  PubMed  Google Scholar 

  84. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39:107–27.

    Article  PubMed  Google Scholar 

  85. Stray-Gundersen J, Levine BD. Live high, train low at natural altitude. Scand J Med Sci Sports. 2008;18 Suppl 1:21–8.

    Article  PubMed  Google Scholar 

  86. Desplanches D, Hoppeler H, Linossier MT, et al. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993;425:263–7.

    Article  PubMed  CAS  Google Scholar 

  87. Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports. 2008;18 Suppl 1:38–49.

    Article  PubMed  Google Scholar 

  88. Hoppeler H, Vogt M. Hypoxia training for sea-level performance. Training high-living low. Adv Exp Med Biol. 2001;502:61–73.

    Article  PubMed  CAS  Google Scholar 

  89. Mounier R, Pialoux V, Roels B, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105:515–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Hoppeler M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppeler, H., Mueller, M., Vogt, M. (2014). Skeletal Muscle Tissue Changes with Hypoxia. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics