Skip to main content
Log in

Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamczewska AM, Morris S (1996) The respiratory gas transport, acid-base state, ion and metabolite status of the Christmas Island Blue Crab, Cardisoma hirtipes (Dana) assessed in situ with respect to immersion. Physiol Zool 69:67–92

    Article  Google Scholar 

  • Austin CM (1995) Effect of temperature and salinity on the survival and growth of juvenile redclaw (Cherax quadricarinatus). Freshwater Crayfish 10:419–426

    Google Scholar 

  • Barton BA, Schreck CB (1987) Metabolic cost of acute physical stress in juvenile steelhead. Trans Am Fish Soc 116:257–263

    Article  Google Scholar 

  • Böcking D, Dircksen H, Keller R (2002) The crustacean neuropeptides of the CHH/MIH/GIH family: structures and biological activities. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 84–97

    Chapter  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang ES, Keller R, Chang SA (1998) Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. Gen Comp Endocrinol 111:359–366

    Article  PubMed  CAS  Google Scholar 

  • Chang ES, Chang SA, Keller R, Reddy PS, Snyder MJ, Spees JL (1999) Quantification of stress in lobsters: crustacean hyperglycemic hormone, stress proteins, and gene expression. Am Zool 39:487–495

    Article  CAS  Google Scholar 

  • Charmantier-Daures M, Charmantier G, Janssen KP, Aiken DE, van Herp F (1994) Involvement of eyestalk factors in the neuroendocrine control of osmoregulation in adult American lobster Homarus americanus. Gen Comp Endocrinol 94:281–293

    Article  PubMed  CAS  Google Scholar 

  • Chittó ALF, Schein V, Etges R, Kucharski LC, Silva RSMD (2009) Effects of photoperiod on gluconeogenic activity and total lipid concentration in organs of crabs, Neohelice granulata, challenged by salinity changes. Invertebr Biol 128:261–268

    Article  Google Scholar 

  • Chung JS, Webster SG (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas: a possible osmoregulatory role. Gen Comp Endocrinol 147:206–213

    Article  PubMed  CAS  Google Scholar 

  • Chung JS, Zmora N (2008) Functional studies of crustacean hyperglycemic hormones (CHHs) of the blue crab, Callinectes sapidus—the expression and release of CHH in eyestalk and pericardial organ in response to environmental stress. FEBS J 275:693–704

    Article  PubMed  CAS  Google Scholar 

  • Chung JS, Dircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci 96:13103–13107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166(2010):447–454

    Article  PubMed  CAS  Google Scholar 

  • Da Silva RSM, Kucharski LC (1992) Effect of hyposmotic stress on the carbohydrate metabolism of crabs maintained on high protein or carbohydrate-rich diet. Comp Biochem Physiol 101A:631–634

    Article  Google Scholar 

  • de Kleijn DP, Van Herp F (1998) Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapod crustaceans. Invert Reprod Dev 33:263–272

    Article  Google Scholar 

  • de Kleijn DP, Janssen KP, Waddy SL, Hegeman R, Lai WY, Martens GJ, Van Herp F (1998) Expression of the crustacean hyperglycaemic hormones and the gonad-inhibiting hormone during the reproductive cycle of the female American lobster Homarus americanus. J Endocrinol 156:291–298

    Article  PubMed  Google Scholar 

  • Dircksen H (2013) Crustacean bioactive peptides. In: Kastin A (ed) Handbook of biologically active peptides, 2nd edn. Academic Press, Baton Rouge, pp 209–221

    Chapter  Google Scholar 

  • Durand F, Devillers N, Lallier FH, Regnault M (2000) Nitrogen excretion and change in blood components during emersion of the subtidal spider crab Maia Squinado (L.). Comp Biochem Physiol 127A:259–271

    Article  CAS  Google Scholar 

  • Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol 142C:390–400

    CAS  Google Scholar 

  • Geary N, Langhans W, Scharrer E (1981) Metabolic concomitants of glucagon-induced suppression of feeding in the rat. Am J Physiol 241:R330–R335

    PubMed  CAS  Google Scholar 

  • Gu PL, Yu KL, Chan SM (2000) Molecular characterization of an additional shrimp hyperglycemic hormone: cDNA cloning, gene organization, expression and biological assay of recombinant proteins. FEBS Lett 472:122–128

    Article  PubMed  CAS  Google Scholar 

  • Ho PY, Kuo CH, Kuo CM, Chen YN (2002) Physiological responses of spotted grouper juveniles, Epinephelus coioides, under acute thermal shock. J Fisheries Soc Taiwan 29:275–285

    CAS  Google Scholar 

  • Jeon JM, Kim BK, Lee JH, Kim HJ, Kang CK, Mykles DL, Kim HW (2012) Two type I crustacean hyperglycemic hormone (CHH) genes in Morotoge shrimp (Pandalopsis japonica): cloning and expression of eyestalk and pericardial organ isoforms produced by alternative splicing and a novel type I CHH with predicted structure shared with type II CHH peptides. Comp Biochem Physiol 162B:88–89

    Article  CAS  Google Scholar 

  • Jones CM (1997) The biology and aquaculture potential of the tropical freshwater crayfish Cherax quadricarinatus. Dept of Primary Ind, Brisbane

    Google Scholar 

  • Karplus I, Zoran M, Milstein A, Harpaz S, Eran Y, Joseph D, Sagi A (1998) Culture of the Australian red-claw crayfish (Cherax quadricarinatus) in Israel III. Survival in earthen ponds under ambient winter temperatures. Aquaculture 166:259–267

    Article  Google Scholar 

  • Katayama H, Ohira T, Aida K, Nagasawa H (2002) Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides 23:1537–1546

    Article  PubMed  CAS  Google Scholar 

  • Kawakami T, Toda C, Akaji K, Nishimura T, Nakatsuji T, Ueno K, Sonobe M, Sonobe H, Aimoto S (2000) Synthesis of a molt-inhibiting hormone of the American crayfish, Procambarus clarkii, and determination of the location of its disulfide linkages. J Biochem 128:455–461

    Article  PubMed  CAS  Google Scholar 

  • Kegel G, Reichwein B, Weese S, Gaus G, Peter-Katalinic J, Keller R (1989) Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett 255:10–14

    Article  PubMed  CAS  Google Scholar 

  • Keller R (1992) Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48:439–448

    Article  PubMed  CAS  Google Scholar 

  • Keller R, Sedlmeier D (1988) A metabolic hormone in crustaceans: The hyperglycemic neuropeptide. In: Epple A, Scanes CG, Stetson MH (eds) Progress in comparative endocrinology. Wiley-Liss, New York, pp 265–271

    Google Scholar 

  • Kung PC, Wu SH, Nagaraju PC, Tsai WS, Lee CY (2013) Crustacean hyperglycemic hormone precursor transcripts in the hemocytes of the crayfish Procambarus clarkii: novel sequence characteristics relating to gene splicing pattern and transcript stability. Gen Comp Endocrinol 186:80–84

    Article  PubMed  CAS  Google Scholar 

  • Kuo CM, Yang YH (1999) Hyperglycemic responses to cold shock in the freshwater giant prawn Macrobrachium rosenbergii. J Comp Physiol 169B:49–54

    Article  Google Scholar 

  • Lacombe C, Greve P, Martin G (1999) Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33:71–80

    Article  PubMed  CAS  Google Scholar 

  • Lago-Lestón A, Ponce E, Muñoz ME (2007) Cloning and expression of hyperglycemic (CHH) and molt-inhibiting (MIH) hormones mRNAs from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperature and salinity conditions. Aquaculture 270:343–357

    Article  CAS  Google Scholar 

  • Liu M, Pan L, Li L, Zheng D (2014) Molecular cloning, characterization and recombinant expression of crustacean hyperglycemic hormone in white shrimp Litopenaeus vannamei. Peptides 53:115–124

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon S, Giulianini PG, Ferrero EA (1997) Lipopolysaccharide-induced hyperglycemia is mediated by CHH release in crustaceans. Gen Comp Endocrinol 108:395–405

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon S, Pasqual P, Ferrero EA (2002) Different bacterial lipopolysaccharides as toxicants and stressors in the shrimp Palaemon elegans. Fish Shellfish Immunol 13:27–45

    Article  PubMed  CAS  Google Scholar 

  • Meade ME, Doeller JE, Kraus DW, Watts SA (2002) Effects of temperature and salinity on weight gain, oxygen consumption rate, and growth efficiency in juvenile red-claw crayfish Cherax quadricarinatus. J World Aq Soc 33:188–198

    Article  Google Scholar 

  • Mettulio R, Giulianini PG, Ferrero EA, Lorenzon S, Edomi P (2004) Functional analysis of crustacean hyperglycemic hormone by in vivo assay with wild-type and mutant recombinant proteins. Regul Pept 119:189–197

    Article  PubMed  CAS  Google Scholar 

  • Mosco A, Edomi P, Guarnaccia C, Lorenzon S, Pongor S, Ferrero EA, Giulianini PG (2008) Functional aspects of CHH C-terminal amidation in crayfish species. Regul Pept 147:88–95

    Article  PubMed  CAS  Google Scholar 

  • Nagai C, Asazuma H, Nagata S, Ohira T, Nagasawa H (2009) A convenient method for preparation of biologically active recombinant CHH of the kuruma prawn, Marsupenaeus japonicus, using the bacterial expression system. Peptides 30:507–517

    Article  PubMed  CAS  Google Scholar 

  • Nyström P (2002) Ecology. In: Holdrich DM (ed) Biology of freshwater crayfish. Blackwell Science, New York, pp 192–235

    Google Scholar 

  • Prymaczok NC, Medesani DA, Rodríguez EM (2008) Levels of ions and organic metabolites in the adult freshwater crayfish, Cherax quadricarinatus, exposed to different salinities. Mar Freshwat Behav Physiol 48:121–130

    Article  CAS  Google Scholar 

  • Prymaczok NC, Chaulet A, Medesani DA, Rodríguez EM (2012) Survival, growth, and physiological responses of advanced juveniles freshwater crayfish (Cherax quadricarinatus), reared at low temperature and high salinities. Aquaculture 334–337:176–181

    Article  CAS  Google Scholar 

  • Reddy PS, Sainath SB (2009) Hyperglycemic hormone in freshwater prawn Macrobrachium rosenbergii: purification from eyestalk nervous tissue and quantification by ELISA in hemolymph following various stresses. Aquaculture 286:290–295

    Article  CAS  Google Scholar 

  • Santos EA, Colares EP (1990) Blood glucose changes in the blue crab Callinectes sapidus Rathbun on transfer from sea water to air. Braz J Med Biol Res 23:333–335

    PubMed  CAS  Google Scholar 

  • Santos EA, Keller R (1993a) Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: current perspective. Comp Biochem Physiol 106A:405–411

    Article  CAS  Google Scholar 

  • Santos EA, Keller R (1993b) Regulation of circulating levels of the crustacean hyperglycemic hormone-evidence of a dual feedback control system. J Comp Physiol 163A:374–379

    Google Scholar 

  • Santos EA, Keller R (1993c) Effect of exposure to atmospheric air on blood glucose and lactate concentrations in two crustacean species: a role of the crustacean hyperglycemic hormone (CHH). Comp Biochem Physiol 106:343–347

    Article  Google Scholar 

  • Santos EA, Nery LEM (1987) Blood glucose regulation in an estuarine crab, Chasmagnathus granulata (Dana 1851), exposed to different salinities. Comp Biochem Physiol 87A:1033–1035

    Article  CAS  Google Scholar 

  • Santos EA, Nery LE, Keller R, Goncalves AA (1997) Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiol Zool 70:415–420

    Article  PubMed  CAS  Google Scholar 

  • Santos EA, Keller R, Rodriguez E, Lopez L (2001) Effects of serotonin and fluoxetine on blood glucose regulation in two decapod species. Braz J Med Biol Res 34:75–80

    PubMed  CAS  Google Scholar 

  • Schmitt ASC, Santos EA (1993) Lipid and carbohydrate metabolism of the intertidal crab Chasmagnathus granulata Dana 1851 (Crustacea: Decapoda) during emersion. Comp Biochem Physiol 106A:329–336

    Article  CAS  Google Scholar 

  • Sedlmeier D (1985) Mode of action of the crustacean hyperglycemic hormone. Am Zool 25:223–232

    Article  CAS  Google Scholar 

  • Serrano L, Blanvillain G, Soyez D, Charmantier G, Grousset E, Aujoulat F, Spanings-Pierrot C (2003) Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus. J Exp Biol 206:979–988

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New York

    Google Scholar 

  • Spanings-Pierrot C, Soyez D, Van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G (2000) Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen Comp Endocrinol 119:340–350

    Article  PubMed  CAS  Google Scholar 

  • Stentiford GD, Chang ES, Chang SA, Neil DM (2001) Carbohydrate dynamics and the crustacean hyperglycemic hormone (CHH): effects of parasitic infection in Norway lobsters (Nephrops norvegicus). Gen Comp Endocrinol 121:13–22

    Article  PubMed  CAS  Google Scholar 

  • Turner LM, Webster SG, Morris S (2013) Roles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste. J Exp Biol 216:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Udomkit A, Treerattrakool S, Panyim S (2004) Crustacean hyperglycemic hormones of Penaeus monodon: cloning, production of active recombinant hormones and their expression in various shrimp tissues. J Exp Mar Biol Ecol 298:79–91

    Article  CAS  Google Scholar 

  • Van Handel E (1965) Estimation of glycogen in small amount of tissue. Anal Biochem 11:256–265

    Article  PubMed  Google Scholar 

  • Vijayan M, Mommsen T, Eacute GI, Met H, Moon T (1996) Metabolic effects of cortisol treatment in a marine teleost, the sea raven. J Exp Biol 199:1509–1514

    PubMed  CAS  Google Scholar 

  • Vijayan MM, Pereira C, Graul EG, Lwama GK (1997) Metabolic responses to confinement stress in tilapia: the role of cortisol. Comp Biochem Physiol 116C:89–95

    CAS  Google Scholar 

  • Webster S (1996) Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J Exp Biol 199:1579–1585

    PubMed  CAS  Google Scholar 

  • Webster SG, Dircksen H, Chung JS (2000) Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide. Cell Tissue Res 300:193–205

    Article  PubMed  CAS  Google Scholar 

  • Webster SG, Keller R, Dircksen H (2012) The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen Comp Endocrinol 175:217–233

    Article  PubMed  CAS  Google Scholar 

  • Yildiz HY, Köksal G, Benli AC (2005) Physiological responses of the crayfish, Astacus leptodactylus, to saline water. Crustaceana 77:1271–1276

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from both the University of Buenos Aires UBACYT (2012–2015 program, code 20020110100044) and CONICET (PIP 2010–2012, code 100884). The authors wish to thank Dr. Prof. Amir Sagi for his generous gift of the CHH cDNA, Dr. Juan Gerez for his valuable help with the analysis of CHH expression, and Amir Dyzenchauz for revising the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique M. Rodríguez.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prymaczok, N.C., Pasqualino, V.M., Viau, V.E. et al. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress. J Comp Physiol B 186, 181–191 (2016). https://doi.org/10.1007/s00360-015-0954-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0954-0

Keywords

Navigation