Skip to main content
Log in

Phosphorylation increases the catalytic activity of rainbow trout gill cytosolic carbonic anhydrase

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Cytoplasmic carbonic anhydrase (CAc) in the gill of teleost fish contributes to ionic regulation and acid–base balance by catalyzing the reversible reaction of CO2 and water, CO2 + H2O ↔ H+ + HCO3 . Regulation of CAc abundance and activity therefore is expected to fine-tune responses to ionic or acid–base challenges. The present study investigated the potential for gill CAc of rainbow trout, Oncorhynchus mykiss (tCAc), to undergo reversible phosphorylation. The activity of tCAc was approximately doubled by phosphorylation achieved through in vitro stimulation of endogenous protein kinases; kinase stimulation doubled phospho-threonine content from that observed in tCAc isolated under conditions where both kinases and protein phosphatases were inhibited. In vitro incubation to preferentially stimulate specific kinases implicated protein kinase G (PKG) in mediating the increase in tCAc activity. The kinetic parameters of turnover number (k cat) and substrate affinity (K m) were similarly affected by stimulation of either kinase or phosphatase action. However, phosphorylation via kinase stimulation significantly increased the efficiency of tCAc (V max /K m), and this factor may have contributed to the elevation of tCAc activity. In addition, phosphorylation of tCAc by kinase stimulation significantly increased the inhibition constant (K i) for acetazolamide. These results demonstrate that tCAc is subject to reversible phosphorylation; future work should focus on identifying the physiological situation(s) in which phosphorylation of trout branchial CAc occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bersimbaev RI, Konstantinov YM, Argutinskaya SV, Salganik RI (1975) The activation of rat gastric tissue carbonic anhydrase as a result of phosphorylation by 3′-5′-AMP-dependent protein kinase. Biokhimiia 40:570–577

    CAS  PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Boisen AMZ, Amstrup J, Novak I, Grosell M (2003) Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim Biophys Acta 1618:207–218

    Article  CAS  PubMed  Google Scholar 

  • Boone CD, Pinard M, McKenna R, Silverman D (2014) Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Subcellular biochemistry v 75. Springer, Dordrecht, pp 31–52

    Chapter  Google Scholar 

  • Chang I-C, Hwang P-P (2004) Cl uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus). Physiol Biochem Zool 77:406–414

    Article  CAS  PubMed  Google Scholar 

  • Chegwidden WR (1991) Purification of the carbonic anhydrases. In: Dodgson SJ, Tashian RE, Gros G, Carter N (eds) The carbonic anhydrases: cellular physiology and molecular genetics. Plenum Press, New York, pp 101–118

    Chapter  Google Scholar 

  • Church GA, Kimelberg HK, Sapirstein VS (1980) Stimulation of carbonic anhydrase activity and phosphorylation in primary astroglial cultures by norepinephrine. J Neurochem 34:873–879

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25:596–601

    Article  CAS  PubMed  Google Scholar 

  • Craig PM, Wood CM, McLelland GB (2007) Gill membrane remodeling with soft-water acclimation in zebrafish (Danio rerio). Physiol Genomics 30:53–60

    Article  CAS  PubMed  Google Scholar 

  • Dieni CA, Storey KB (2010) Regulation of glucose-6-phosphate dehydrogenase by reversible phosphorylation in liver of a freeze tolerant frog. J Comp Physiol B 180:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Ditte P, Dequiedt F, Svastova E, Hulikova A, Ohradanova-Repic A, Zatovicova M, Csaderova L, Kopacek J, Supuran CT, Pastoreková S, Pastorek J (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 71:7558–7567

    Article  CAS  PubMed  Google Scholar 

  • Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S (2007) Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol 292:R470–R480

    CAS  Google Scholar 

  • Esbaugh A, Lund SG, Tufts BL (2004) Comparative physiology and molecular analysis of carbonic anhydrase from the red blood cells of teleost fish. J Comp Physiol B 174:429–438

    CAS  PubMed  Google Scholar 

  • Esbaugh A, Perry SF, Bayaa M, Georgalis T, Nickerson JG, Tufts BL, Gilmour KM (2005) Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution. J Exp Biol 208:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Galvez F, Reid SD, Hawkings GS, Goss GG (2002) Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol 282:R658–R668

    CAS  Google Scholar 

  • Georgalis T, Gilmour KM, Yorston J, Perry SF (2006a) The roles of cytosolic and membrane bound carbonic anhydrase in the renal control of acid-base balance in rainbow trout Oncorhynchus mykiss. Am J Physiol 291:F407–F421

    Article  CAS  Google Scholar 

  • Georgalis T, Perry SF, Gilmour KM (2006b) The role of branchial carbonic anhydrase in acid-base regulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:518–530

    Article  CAS  PubMed  Google Scholar 

  • Gibbs MA, Kunze KL, Howald WN, Thummel KE (1999) Effect of inhibitor depletion on inhibitory potency: tight binding inhibition of CYP3A by clotrimazole. DMD 27:596–599

    CAS  Google Scholar 

  • Gilmour KM (2012) New insights into the many functions of carbonic anhydrase in fish gills. Respir Physiol Neurobiol 184:223–230

    Article  CAS  PubMed  Google Scholar 

  • Gilmour KM, Collier CL, Dey CJ, Perry SF (2011) Roles of cortisol and carbonic anhydrase in acid-base compensation in rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 181:501–515

    CAS  PubMed  Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Gilmour KM, Perry SF, Bernier NJ, Henry RP, Wood CM (2001) Extracellular carbonic anhydrase in dogfish, Squalus acanthias: a role in CO2 excretion. Physiol Biochem Zool 74:477–492

    Article  CAS  PubMed  Google Scholar 

  • Gilmour KM, Randall DJ, Perry SF (1994) Acid-base disequilibrium in the arterial blood of rainbow trout. Respir Physiol 96:259–272

    Article  CAS  PubMed  Google Scholar 

  • Goss GG, Adamia S, Galvez F (2001) Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium. Am J Physiol 281:R1718–R1725

    CAS  Google Scholar 

  • Goss GG, Wood CM (1990) Na+ and Cl uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout I. Responses to environmental hyperoxia. J Exp Biol 152:521–547

    CAS  Google Scholar 

  • Henderson PJF (1973) Steady-state enzyme kinetics with high-affinity substrates or inhibitors. A statistical treatment of dose-response curves. Biochem J 135:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RP (1991) Techniques for measuring carbonic anhydrase activity in vitro: the electrometric delta pH and pH stat assays. In: Dodgson SJ, Tashian RE, Gros G, Carter ND (eds) The carbonic anhydrases: cellular physiology and molecular genetics. Plenum, New York, pp 119–126

    Chapter  Google Scholar 

  • Henry RP, Tufts BL, Boutilier RG (1993) The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. J Comp Physiol B 163:380–388

    Article  CAS  Google Scholar 

  • Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang M-H, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol 284:R1199–R1212

    CAS  Google Scholar 

  • Innocenti A, Scozzafava A, Parkkila S, Puccetti L, De Simone G, Supuran CT (2008) Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg Med Chem Lett 18:2267–2271

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Olson KR (2008) Comparative physiology of the piscine natriuretic peptide system. Gen Comp Endocrinol 157:21–26

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter TH, Kirschner LB, Rafuse DD (1970) On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol 56:342–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumai Y, Ward MAR, Perry SF (2012) β-Adrenergic regulation of Na+ uptake by larval zebrafish Danio rerio in acidic and ion-poor environments. Am J Physiol 303:R1031–R1041

    CAS  Google Scholar 

  • Lindskog S, Silverman DN (2000) The catalytic mechanism of mammalian carbonic anhydrases. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases: new horizons. Birkhäuser Verlag, Basel, pp 175–195

    Chapter  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Maetz J, Garcia-Romeu F (1964) The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus II. Evidence for NH4 + +/Na and HCO3 /Cl exchanges. J Gen Physiol 47:1209–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffia M, Rizzello A, Acierno R, Rollo M, Chiloiro R, Storelli C (2001) Carbonic anhydrase activity in tissues of the icefish Chionodraco hamatus and of the red-blooded teleosts Trematomus bernacchii and Anguilla anguilla. J Exp Biol 204:3983–3992

    CAS  PubMed  Google Scholar 

  • Maren TH, Friedland BR, Rittmaster RS (1980) Kinetic properties of primitive vertebrate carbonic anhydrases. Comp Biochem Physiol 67B:69–74

    CAS  Google Scholar 

  • Maren TH, Wynns GC, Wistrand PJ (1993) Chemical properties of carbonic anhydrase IV, the membrane-bound enzyme. Mol Pharmacol 44:901

    CAS  PubMed  Google Scholar 

  • Marino S, Hayakawa K, Hatada K, Benfatto M, Rizzello A, Maffia M, Bubacco L (2007) Structural features that govern enzymatic activity in carbonic anhydrase from a low-temperature adapted fish, Chionodraco hamatus. Biophys J 93:2781–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WS, Grosell M (2006) Ion transport, osmoregulation, and acid-base balance. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • McKenna R, Supuran CT (2014) Carbonic anhydrase inhibitors drug design. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Dordrecht, pp 291–323

    Chapter  Google Scholar 

  • Morrison JF (1969) Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta 185:269–286

    Article  CAS  PubMed  Google Scholar 

  • Narumi S, Miyamoto E (1974) Activation and phosphorylation of carbonic anhydrase by adenosine 3′,5′-monophosphate-dependent protein kinases. Biochim Biophys Acta 350:215–224

    Article  CAS  PubMed  Google Scholar 

  • Olson KR, Donald JA, Dombkowski RA, Perry SF (2012) Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 184:117–129

    Article  CAS  PubMed  Google Scholar 

  • Pastoreková S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229

    Article  PubMed  Google Scholar 

  • Payan P, Matty AJ, Maetz J (1975) A study of the sodium pump in the perfused head preparation of the trout Salmo gairdneri in freshwater. J Comp Physiol 104:33–48

    CAS  Google Scholar 

  • Perry SF, Gilmour KM, Bernier NJ, Wood CM (1999) Does gill boundary layer carbonic anhydrase contribute to carbon dioxide excretion: a comparison between dogfish (Squalus acanthias) and rainbow trout (Oncorhynchus mykiss). J Exp Biol 202:749–756

    CAS  PubMed  Google Scholar 

  • Perry SF, Laurent P (1990) The role of carbonic anhydrase in carbon dioxide excretion, acid-base balance and ionic regulation in aquatic gill breathers. In: Truchot J-P, Lahlou B (eds) Animal nutrition and transport processes 2. Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp 39–57

    Google Scholar 

  • Perry SF, Malone S, Ewing D (1987) Hypercapnic acidosis in the rainbow trout (Salmo gairdneri) I. Branchial ionic fluxes and blood acid-base status. Can J Zool 65:888–895

    Article  CAS  Google Scholar 

  • Rizzello A, Ciardiello MA, Acierno R, Carratore V, Verri T, Di Prisco G, Storelli C, Maffia M (2007) Biochemical characterization of a S-glutathionylated carbonic anhydrase isolated from gills of the Antarctic icefish Chionodraco hamatus. Protein J 26:335–348

    Article  CAS  PubMed  Google Scholar 

  • Ruppelt A, Oberprieler NG, Magklaras G, Taskén K (2010) Physiological substrates of PKA and PKG. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Elsevier, Amsterdam, pp 1497–1514

    Chapter  Google Scholar 

  • Santovito G, Marino SM, Sattin G, Cappellini R, Bubacco L, Beltramini M (2012) Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biol 35:1587–1600

    Article  Google Scholar 

  • Scott GR, Baker DW, Schulte PM, Wood CM (2008) Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J Exp Biol 211:2450–2459

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Claiborne JB, Edwards SL, Schulte PM, Wood CM (2005) Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J Exp Biol 208:2719–2729

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Hirose S (2002) The natriuretic peptide system in eels: a key endocrine system for euryhalinity? Am J Physiol 282:R940–R951

    CAS  Google Scholar 

  • Tanc M, Carta F, Scozzafava A, Supuran CT (2015) α-Carbonic anhydrases possess thioesterase activity. ACS Med Chem Lett 6:292–295

    Article  CAS  PubMed  Google Scholar 

  • Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresguerres M, Katoh F, Orr E, Parks SK, Goss GG (2006) Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol Biochem Zool 79:981–996

    Article  CAS  PubMed  Google Scholar 

  • Whitney PL (1974) Affinity chromatography of carbonic anhydrase. Anal Biochem 57:467–476

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Wheatly MG, Hõbe H (1984) The mechanisms of acid-base and ionoregulation in the freshwater rainbow trout during environmental hyperoxia and subsequent normoxia III. Branchial exchanges. Respir Physiol 55:175–192

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZJ, Storey KB (2012) Regulation of liver lactate dehydrogenase by reversible phosphorylation in response to anoxia in a freshwater turtle. Comp Biochem Physiol B 163:221–228

    Article  CAS  PubMed  Google Scholar 

  • Zinke M, Hanff E, Böhmer A, Supuran CT, Tsikas D (2015) Discovery and microassay of a nitrite-dependent carbonic anhydrase activity by stable-isotope dilution gas chromatography-mass spectrometry. Amino Acids. doi:10.1007/s00726-015-2081-3

Download references

Acknowledgments

This work was supported by NSERC of Canada Discovery and Research Tools and Instruments grants to KMG. DC was supported by an NSERC postgraduate scholarship and an Ontario graduate scholarship. Thanks are extended to Bill Fletcher and Christine Archer for their excellent care of the trout in the aquatic facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Gilmour.

Additional information

Communicated by H.V. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrie, D., Gilmour, K.M. Phosphorylation increases the catalytic activity of rainbow trout gill cytosolic carbonic anhydrase. J Comp Physiol B 186, 111–122 (2016). https://doi.org/10.1007/s00360-015-0942-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0942-4

Keywords

Navigation