Skip to main content
Log in

Acclimation to different environmental salinities induces molecular endocrine changes in the GH/IGF-I axis of juvenile gilthead sea bream (Sparus aurata L.)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

To assess the role of the GH/IGF-I axis in osmotic acclimation of the gilthead seabream Sparus aurata, juvenile specimens were acclimated to four environmental salinities: hyposmotic (5 ‰), isosmotic (12 ‰) and hyperosmotic (40 and 55 ‰). The full-length cDNAs for both pituitary adenylate cyclase-activating peptide (PACAP) and prepro-somatostatin-I (PSS-I), the precursor for mature somatostatin-I (SS-I), were cloned. Hypothalamic PACAP and PSS-I, hypophyseal growth hormone (GH) and prolactin (PRL), and hepatic insulin-like growth factor-I (IGF-I) mRNA expression levels were analyzed in the four rearing salinities tested. PACAP and IGF-I mRNA values increased significantly in response to both 5 and 55 ‰ salinities, showing a U-shaped curve relationship with the basal level in the 40 ‰ group. Hypothalamic PSS-I expression increased strongly in the 55 ‰ environment. GH mRNA levels did not change in any of the tested environmental salinities. PRL mRNA maximum levels were encountered in the 5 and 12 ‰ environments, but significantly down-regulated in the 40 ‰. Plasma cortisol levels significantly increased in the 40 ‰ environment. These results are discussed in relation to the well-known high adaptability of Sparus aurata to different environmental salinities and the role of the GH/IGF-I axis in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D (2000) Patterns of variant polyadenylation signal usage in human genes. Genome Res 10:1001–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Cameron C, Moccia RD, Leatherland JF (2005) Growth hormone secretion from the Arctic charr (Salvelinus alpinus) pituitary gland in vitro: effects of somatostatin-14, insulin-like growth factor-I, and nutritional status. Gen Comp Endocrinol 141:93–100

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JC, Vieira FA, Gomes AS, Power DM (2007) PACAP, VIP and their receptors in the metazoa: insights about the origin and evolution of the ligand-receptor pair. Peptides 28:1902–1919

    Article  CAS  PubMed  Google Scholar 

  • Cook AF, Peter RE (1984) The effects of somatostatin on serum growth hormone levels in the goldfish, Carassius auratus. Gen Comp Endocrinol 54:109–113

    Article  CAS  PubMed  Google Scholar 

  • Deane EE, Woo NY (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287:R1054–R1063

    Article  CAS  PubMed  Google Scholar 

  • Deane EE, Woo NY (2005) Upregulation of the somatotropic axis is correlated with increased G6PDH expression in Black Sea bream adapted to iso-osmotic salinity. Ann NY Acad Sci 1040:293–296

    Article  CAS  PubMed  Google Scholar 

  • Forsyth IA, Wallis M (2002) Growth hormone and prolactin–molecular and functional evolution. J Mammary Gland Biol Neoplasia 7:291–312

    Article  PubMed  Google Scholar 

  • Fuentes J, Brinca L, Guerreiro PM, Power DM (2010) PRL and GH synthesis and release from the sea bream (Sparus auratus L.) pituitary gland in vitro in response to osmotic challenge. Gen Comp Endocrinol 168:95–102

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Requeni P, Kraemer MN, Canosa LF (2012) Regulation of somatic growth and gene expression of the GH-IGF system and PRP-PACAP by dietary lipid level in early juveniles of a teleost fish, the pejerrey (Odontesthes bonariensis). J Comp Physiol 182B:517–530

    Article  Google Scholar 

  • Hang XM, Power D, Flik G, Balment RJ (2005) Measurement of PTHrP, PTHR1, and CaSR expression levels in tissues of sea bream (Sparus aurata) using quantitative PCR. Ann NY Acad Sci 1040:340–344

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen EH, Aas-Hansen Ø, Moriyama S, Iwata M, Strand JET (2007) The parr-smolt transformation of Arctic charr is comparable to that of Atlantic salmon. Aquaculture 273:227–234

    Article  Google Scholar 

  • Klein SE, Sheridan MA (2008) Somatostatin signalling and the regulation of growth and metabolism in fish. Mol Cell Endocrinol 286:148–154

    Article  CAS  PubMed  Google Scholar 

  • Kwong AKY, Ng AHY, Leung LY, Man AKY, Woo NYS (2009) Effect of extracellular osmolality and ionic levels on pituitary prolactin release in euryhaline silver sea bream (Sparus sarba). Gen Comp Endocrinol 160:67–75

    Article  CAS  PubMed  Google Scholar 

  • Laiz-Carrión R, Guerreiro PM, Fuentes J, Canario AV, Martín Del Río MP, Mancera JM (2005a) Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. J Exp Zool 303A:563–576

    Article  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán JM, Martín del Río MP, Soengas JL, Mancera JM (2005b) Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture 250:849–861

    Article  Google Scholar 

  • Laiz-Carrión R, Fuentes J, Redruello B, Guzmán JM, Martín del Río MP, Power D, Mancera JM (2009) Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen Comp Endocrinol 162:293–300

    Article  PubMed  Google Scholar 

  • Link K, Berishvili G, Shved N, D’Cotta H, Baroiller JF, Reinecke M, Eppler E (2010) Seawater and freshwater challenges affect the insulin-like growth factors IGF-I and IGF-II in liver and osmoregulatory organs of the tilapia. Mol Cell Endocrinol 327:40–46

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mancera JM, McCormick SD (1998) Osmoregulatory actions of the GH/IGF-I axis in non-salmonid teleosts. Comp Biochem Physiol 121B:43–48

    Article  CAS  Google Scholar 

  • Mancera JM, McCormick SD (2007) Role of prolactin, growth hormone, insulin-like growth factor I and cortisol in teleost osmoregulation. In: Kapoor BG, Baldisserotto B, Mancera Romero JM (eds) Fish osmoregulation. Science Publishers, Enfield, pp 497–515

  • Mancera JM, Fernández-Llebrez P, Grondona JM, Pérez-Fígares JM (1993a) Influence of environmental salinity on prolactin and corticotropic cells in the gilthead sea bream (Sparus aurata L.). Gen Comp Endocrinol 90:220–231

    Article  CAS  PubMed  Google Scholar 

  • Mancera JM, Fernández-Llebrez P, Pérez-Fígares JM (1993b) Osmoregulatory responses during abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol 106A:245–250

    Article  CAS  Google Scholar 

  • Mancera JM, Pérez-Fígares JM, Fernández-Llébrez P (1995) Effect of decreased environmental salinity on growth hormone cells in the euryhaline gilthead sea bream (Sparus aurata L.). J Fish Biol 46:494–500

    Article  CAS  Google Scholar 

  • Mancera JM, Laiz-Carrión R, Martín del Río MP (2002) Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95–103

    Article  Google Scholar 

  • Manzon LA (2002) The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol 125:291–310

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Barberá JP, Pendón C, Rodríguez RB, Pérez-Sánchez J, Valdivia MM (1994) Cloning, expression, and characterization of a recombinant gilthead seabream growth hormone. Gen Comp Endocrinol 96:179–188

    Article  PubMed  Google Scholar 

  • Martos-Sitcha JA, Wunderink YS, Gozdowska M, Kulczykowska E, Mancera JM, Martínez-Rodríguez G (2013) Vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata): an osmoregulatory story. Comp Biochem Physiol 166A:571–581

    Article  Google Scholar 

  • Matsuda K, Nagano Y, Uchiyama M, Onoue S, Takahashi A, Kawauchi H, Shioda S (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP)-like immunoreactivity in the brain of a teleost, Uranoscopus japonicus: immunohistochemical relationship between PACAP and adenohypophysial hormones. Regul Pept 126:129–136

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD (1995) Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol 14. Academic Press, New York, pp 285–315

    Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Kim DG, Jee YJ, Lee SJ (2013) Structural and functional characterization of pituitary adenylyl cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) and its receptor in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol 164B:18–28

    Article  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Parker DB, Power ME, Swanson P, Rivier J, Sherwood NM (1997) Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormones that stimulate growth hormone release. Endocrinology 138:414–423

    CAS  PubMed  Google Scholar 

  • Pérez-Sánchez J, Le Bail P-Y (1999) Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177:117–128

    Article  Google Scholar 

  • Peterson BC, Simpson PR, Cain KD, Hardy RH, Schelling GT, Ott TL (2003) Effects of administration of somatostatin-14 and immunoneutralization of somatostatin on endocrine and growth responses in rainbow trout. J Fish Biol 63:506–522

    Article  CAS  Google Scholar 

  • Pierce AL, Breves JP, Moriyama S, Hirano T, Grau EG (2011) Differential regulation of Igf1 and Igf2 mRNA levels in tilapia hepatocytes: effects of insulin and cortisol on GH sensitivity. J Endocrinol 211:201–210

    Article  CAS  PubMed  Google Scholar 

  • Reinecke M, Björnsson BT, Dickhoff WW, McCormick SD, Navarro I, Power DM, Gutiérrez J (2005) Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen Comp Endocrinol 142:20–24

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez L, Begtashi I, Zanuy S, Carrillo M (2000) Development and validation of an enzyme inmunoassay for testosterone: effects of photoperiod on plasma testosterone levels and gonadal development in male sea bass (Dicentrarchus labrax, L.) at puberty. Fish Physiol Biochem 23:141–150

    Article  Google Scholar 

  • Rousseau K, Le Belle N, Pichavant K, Marchelidon J, Chow BKC, Boeuf G, Dufour S (2001) Pituitary growth hormone secretion in the turbot, a phylogenetically recent teleost, is regulated by a species-specific pattern of neuropeptides. Neuroendocrinology 74:375–385

    Article  CAS  PubMed  Google Scholar 

  • Saera-Vila A, Calduch-Giner JA, Prunet P, Pérez-Sánchez J (2009) Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus aurata) exposed to acute confinement: differential stress response of growth hormone receptors. Comp Biochem Physiol 154A:197–203

    Article  CAS  Google Scholar 

  • Sakamoto T, McCormick SD (2006) Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147:24–30

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, McCormick SD, Hirano T (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11:155–164

    Article  CAS  PubMed  Google Scholar 

  • Sangiao-Alvarellos S, Arjona FJ, Martín del Río MP, Míguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304

    Article  PubMed  Google Scholar 

  • Soengas JL, Sangiao-Alvarellos S, Laiz-Carrión R, Mancera JM (2007) Energy metabolism and osmotic acclimation in teleost fish. In: Kapoor BG, Baldisserotto B, Mancera Romero JM (eds) Fish osmoregulation. Science Publishers, Enfield, pp 278–307

  • Somogyvári-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889

    Article  PubMed  Google Scholar 

  • Takei Y, McCormick SD (2012) Hormonal control of fish euryhalinity. In: McCormick SD, Farrell AP, Brauner CJ (eds) Fish physiology, vol 32. Academic Press, USA, pp 69–123

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiago DM, Laizé V, Cancela ML (2008) Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early development. Gen Comp Endocrinol 157:107–115

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Luckenbach JA, Madsen SS, Kiilerich P, Borski RJ (2008) Osmoregulation and expression of ion transport proteins and putative claudins in the gill of Southern flounder (Paralichthys lethostigma). Comp Biochem Physiol 150A:265–273

    Article  CAS  Google Scholar 

  • Vargas-Chacoff L, Astola A, Arjona FJ, Martín del Río MP, García-Cózar F, Mancera JM, Martínez-Rodríguez G (2009a) Gene and protein expression for prolactin, growth hormone and somatolactin in Sparus aurata: seasonal variations. Comp Biochem Physiol 153B:130–135

    Article  CAS  Google Scholar 

  • Vargas-Chacoff L, Astola A, Arjona FJ, Martín del Río MP, García-Cózar F, Mancera JM, Martínez-Rodríguez G (2009b) Pituitary gene and protein expression under experimental variation on salinity and temperature in gilthead sea bream Sparus aurata. Comp Biochem Physiol 154B:303–308

    Article  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    CAS  PubMed  Google Scholar 

  • Very NM, Kittilson JD, Klein SE, Sheridan MA (2008) Somatostatin inhibits basal and growth hormone-stimulated hepatic insulin-like growth factor-I production. Mol Cell Endocrinol 281:19–26

    Article  CAS  PubMed  Google Scholar 

  • Wong AO, Leung MY, Shea WL, Tse LY, Chang JP, Chow BK (1998) Hypophysiotropic action of pituitary adenylate cyclase-activating polypeptide (PACAP) in the goldfish: immunohistochemical demonstration of PACAP in the pituitary, PACAP stimulation of growth hormone release from pituitary cells, and molecular cloning of pituitary type I PACAP receptor. Endocrinology 139:3465–3479

    CAS  PubMed  Google Scholar 

  • Wong AO, Li WS, Lee EK, Leung MY, Tse LY, Chow BK, Lin HR, Chang JP (2000) Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem Cell Biol 78:329–343

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Chu MMS, Lee EKY, Lin H-R, Wong AOL (2002) Regulation of growth hormone release in common carp pituitary cells by pituitary adenylate cyclase-activating polypeptide: signal transduction involves cAMP- and calcium-dependent mechanisms. Neuroendocrinol 76:325–338

    Article  CAS  Google Scholar 

  • Xing Y, Wensheng L, Haoran L (2005) Polygenic expression of somatostatin in orange-spotted grouper (Epinephelus coioides): molecular cloning and distribution of the mRNAs encoding three somatostatin precursors. Mol Cell Endocrinol 241:62–72

    Article  PubMed  Google Scholar 

  • Xu M, Volkoff H (2009) Cloning, tissue distribution and effects of food deprivation on pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) in Atlantic cod (Gadus morhua). Peptides 30:766–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants AGL2007-61211/ACU (Ministerio de Educación y Ciencia and FEDER, Spain) and Proyecto de Excelencia PO7-RNM-02843 (Junta de Andalucía) to JMM. Authors would like to appreciate Mrs. Asmaa Galal-Khallaf´s precious help during the conduction of the experiment. Also, authors would like to thank Planta de Cultivos Marinos (CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain) for providing experimental fish. KMG would like to appreciate the role of the Egyptian Bureau in Madrid and the Egyptian Government in facilitating the stay period in Spain. Experimentation has been carried out at the Campus de Excelencia Internacional del Mar (CEI-MAR) facilities from the Universidad de Cádiz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mohammed-Geba.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed-Geba, K., Mancera, J.M. & Martínez-Rodríguez, G. Acclimation to different environmental salinities induces molecular endocrine changes in the GH/IGF-I axis of juvenile gilthead sea bream (Sparus aurata L.). J Comp Physiol B 185, 87–101 (2015). https://doi.org/10.1007/s00360-014-0871-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0871-7

Keywords

Navigation