Skip to main content
Log in

The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We investigate the influence of leg mechanics on the vibration input and function of vibrosensitive organs in the legs of the cave cricket Troglophilus neglectus, using laser Doppler vibrometry. By varying leg attachment, leg flexion, and body posture, we identify important influences on the amplitude and frequency parameters of transmitted vibrations. The legs respond best to relatively high-frequency vibration (200–2000 Hz), but in strong dependence on the leg position; the response peak shifts progressively over 500–1400 Hz towards higher frequencies following leg flexion. The response is amplified most strongly on the tibia, where specialised vibrosensory organs occur, and the response amplitude increases with the increasing frequency. Leg responses peaking at 800 and 1400 Hz closely resemble the tuning of the intermediate organ receptors in the proximal tibia of T. neglectus, which may be highly sensitive to positional change. The legs of free-standing animals with the abdomen touching the vibrating substrate show a secondary response peak below 150 Hz, induced by body vibration. Such responses may significantly increase the sensitivity of low-frequency receptors in the tibial accessory organ and the femoral chordotonal organ. The cave cricket legs appear suitable especially for detection of high-frequency vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by laser Doppler vibrometry. J Comp Physiol 150:483–491

    Article  Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insecten. Z Vergl Physiol 31:77–88

    Article  CAS  Google Scholar 

  • Barth FG (1972) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186

    Article  Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. springer handbook of auditory research. Fay RR, Popper AN, (series eds). Springer, Berlin, pp 228–278

    Google Scholar 

  • Barth (2002) Spider senses—technical perfection and biology. Zoology 105:271–285

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in the treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol 186:695–705

    Article  CAS  Google Scholar 

  • Cocroft RB, Gogala M, Hill P, Wessel A (2014) Studying vibrational communication. Springer, Berlin

    Book  Google Scholar 

  • Čokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Rhaphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388

    Article  Google Scholar 

  • Čokl A, Zorović M, Žunič Kosi A, Stritih N, Virant-Doberlet M (2014) Communication through plants in a narrow frequency window. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 171–189

    Google Scholar 

  • Čokl A, Laumann RA, Stritih N (2017) Substrate-borne vibratory communication. In: Čokl A, Borges M (eds) Stink bugs: biorational control based on communication processes, 1st edn. CRC Press, Boca Raton, pp 125–164

    Chapter  Google Scholar 

  • Dambach M (1972) Der Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen frei beweglicher Tiere. J Comp Physiol A 79:281–304

    Article  Google Scholar 

  • Devetak D, Pabst MA, Delakorda SL (2004) Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function. Denisia 13:163–171

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44

    Article  Google Scholar 

  • Eberhard M, Lang D, Metscher B, Pass G, Picker M, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthrop Struct Dev 39:230–241

    Article  CAS  Google Scholar 

  • Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 215–247

    Google Scholar 

  • Endler JA, Basolo A (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    Article  PubMed  CAS  Google Scholar 

  • Erko M, Younes-Metzler O, Rack A, Zaslansky P, Young SL, Milliron G, Chyasnavichyus M, Barth FG, Fratzl P, Tsukruk V, Zlotnikov I, Politi Y (2015) Micro- and nano-structural details of a spider’s filter for substrate vibrations: relevance for low-frequency signal transmission. J R Soc Interface 12:20141111

    Article  PubMed  PubMed Central  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–228

    Article  Google Scholar 

  • Field LH, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Article  Google Scholar 

  • Finck A (1981) The lyriform organ of the orb-weaving spider Araneous sericatus: vibrational sensitivity is altered by bending the leg. J Acoust Soc Am 70:231–233

    Article  Google Scholar 

  • Friedel T (1999) The vibrational startle response of the desert locust Schistocerca gregaria. J Exp Biol 202:2151–2159

    Google Scholar 

  • Greenfield MD (2002) Signalers and receivers. Mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, London

    Google Scholar 

  • Hrncir M, Barth FG (2014) Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 349–374

    Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. CRC Press, Boca Raton, pp 421–436

    Google Scholar 

  • Jeram S, Rössler W, Čokl A, Kalmring K (1995) Structure of atympanate tibial organs in legs of the cave-living Ensifera, Troglophilus neglectus (Gryllacridoidea, Raphidophoridae). J Morphol 223:109–118

    Article  PubMed  CAS  Google Scholar 

  • Kalmring K, Kühne R (1983) The processing of acoustic and vibrational information in insects. In: Lewis B (ed) Bioacoustics. A comparative approach. Academic Press, London, pp 261–282

    Google Scholar 

  • Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the fore-,mid- and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of physiology of the organs. J Exp Zool 270:155–161

    Article  Google Scholar 

  • Kalmring K, Hoffmann E, Jatho M, Sickmann T, Grossbach M (1996) The auditory-vibratory sensory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). II. Physiology of receptor cells. J Exp Zool 276:315–329

    Article  Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Article  Google Scholar 

  • Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163

    Article  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 277–302

    Google Scholar 

  • Lin Y, Rössler W, Kalmring K (1994) Complex tibial organs in the fore-, mid- and hindlegs of the bushcrickets Gampsocleis gratiosa (Tettigoniidae): comparison of the morphology of the organs. J Morphol 221:191–198

    Article  PubMed  Google Scholar 

  • Lin Y, Rössler W, Kalmring K (1995) Morphology of the tibial organs of Acrididae: comparison of subgenual and distal organs in fore-, mid-, and hindlegs of Schistocerca gregaria (Acrididae, Catantopidae) and Locusta migratoria (Acrididae, Oedipodinae). J Morphol 226:351–360

    Article  PubMed  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353

    Chapter  Google Scholar 

  • McConney ME, Schaber CF, Julian MD, Barth FG, Tsukruk VV (2007) Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). J R Soc Interface 4:1135–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles RN (2016) An analytical model for the propagation of bending waves on a plant stem due to vibration of an attached insect. Heliyon 2(3):e00086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mortimer B (2017) Biotremology: do physical constraints limit the propagation of vibrational information? Anim Behav 130:165–174

    Article  Google Scholar 

  • Novak T, Kuštor V (1983) On Troglophilus (Rhaphidophoridae, Saltatoria) from north Slovenia (YU). Mém Biospéol 10:183–189

    Google Scholar 

  • Pehani Š, Virant-Doberlet M, Jeram S (1997) The life cycle of the cave cricket Troglophilus neglectus Krauss with a note on T. cavicola Kollar (Orthoptera: Rhaphidophoridae). Entomologist 116:224–238

    Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9(73):1898–1907

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollack GS, Imaizumi K (1999) Neural analysis of sound frequency in insects. BioEssays 21:295–303

    Article  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer handbook of auditory research. Fay RR, Popper AN (series eds). Springer, New York, pp 63–96

    Google Scholar 

  • Rössler W (1992) Functional morphology and development of tibial organs in the legs I, II and III of the bushcricket Ephippiger ephippiger (Insecta, Ensifera). Zoomorphology 112:181–188

    Article  Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    PubMed  CAS  Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48

    Google Scholar 

  • Schumacher R (1979) Zur funktionellen morphologie des auditorischen systems der Laubheuschrecken. Entomol Gen 5:321–356

    Google Scholar 

  • Shaw SR (1994) Re-evaluation of the absolute threshold and response mode of the most sensitive known “vibration” detector, the cockroach’s subgenual organ: a cochlea-like displacement threshold and a direct response to sound. J Neurobiol 25:1167–1185

    Article  PubMed  CAS  Google Scholar 

  • Stein W, Sauer AE (1999) Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol A 184:253–263

    Article  Google Scholar 

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386

    Google Scholar 

  • Strauß J (2017) The scolopidial accessory organs and Nebenorgans in orthopteroid insects: comparative neuroanatomy, mechansosensory function, and evolutionary origin. Arthropod Struct Dev 46:765–776

    Article  PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol 521:3791–3803

    Article  PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2017) Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp Biochem Physiol A 203:100–108

    Article  CAS  Google Scholar 

  • Strauß J, Stritih N (2016) The accessory organ, a scolopidial sensory organ, in the cave cricket Troglophilus neglectus (Orthoptera: Ensifera: Rhaphidophoridae). Acta Zool Stockh 97:187–195

    Article  Google Scholar 

  • Strauß J, Stritih N, Lakes-Harlan R (2014) The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. Roy Soc Open Sci 1:140240

    Article  Google Scholar 

  • Strauß J, Riesterer AS, Lakes-Harlan R (2016) How many mechanosensory organs in the bushcricket leg? Neuroanatomy of the scolopidial accessory organ in Tettigoniidae (Insecta: Orthoptera). Arthropod Struct Dev 41:31–41

    Google Scholar 

  • Strauß J, Lomas K, Field LH (2017) The complex tibial organ of the New Zealandground weta: sensory adaptations for vibrational signal detection. Sci Rep 7:2031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532

    Article  PubMed  Google Scholar 

  • Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PloS One 7(10):e47646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 375–393

    Google Scholar 

  • Stritih N, Stumpner A (2009) Vibratory interneurons of the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68

    Article  PubMed  Google Scholar 

  • Stumpner A, Nowotny M (2014) Neural processing in the bushcricket auditory pathway. In: Hedwig B (ed) Insect hearing and acoustic communication. Springer, Berlin, pp 143–166

    Chapter  Google Scholar 

  • Windmill JFC, Jackson JC (2016) Mechanical specializations of insect ears. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect Hearing, 1st edn, Springer Handbook of Auditory Research (Fay RR, Popper AN, series eds). Springer International Publishing, Switzerland, pp 125–157

    Google Scholar 

  • Yack J (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing, 1st edn, springer handbook of auditory research (Fay RR, Popper AN, series (eds)). Springer International Publishing, Switzerland, pp 99–123

    Google Scholar 

  • Young SL, Chyasnavichyus M, Erko M, Barth FG, Fratzl P, Zlotnikov I, Politi Y, Tsukruk VV (2014) A spider’s biological vibration filter: Micromechanical characteristics of a biomaterial surface. Acta Biomater 10:4832–4842

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Reinhard Lakes-Harlan (Justus-Liebig-Universität Gießen) for support, and are indebted to Daniel Svenšek (Faculty of Mathematics and Physics, University of Ljubljana) for the discussion of data in the light of resonance phenomena. We are grateful to one anonymous reviewer and to Rex Cocroft for their constructive comments that helped to improve the manuscript. We thank Danait Araia for correcting the language. NSP acknowledges the financial support from the Slovenian Research Agency (research core funding P1-0255). JS was supported by a Young Investigator Grant from the Justus-Liebig-Universität Gießen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Stritih Peljhan.

Ethics declarations

Conflict of interest

No competing interests declared.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stritih Peljhan, N., Strauß, J. The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions. J Comp Physiol A 204, 687–702 (2018). https://doi.org/10.1007/s00359-018-1271-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1271-3

Keywords

Navigation