Skip to main content
Log in

Route-segment odometry and its interactions with global path-integration

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Insects such as desert ants and honeybees use visual memories to travel along familiar routes between their nest and a food-site. We trained Cataglyphis fortis foragers along a two-segment route to investigate whether they encode the lengths of route segments over which visual cues remain approximately constant. Our results support earlier studies suggesting that such route-segment odometry exists, and allows an individual to stop using a visual route memory at an appropriate point, even in the absence of any change in the visual surroundings. But we find that the behavioural effects of route-segment odometry are often complicated by interactions with guidance from the global path-integration system. If route-segment odometry and path-integration agree, they act together to produce a precise signal for search. If the endpoint of route-segment odometry arrives first, it does not trigger search but its effect can persist and cause guidance by path-integration to end early. Conversely, if ants start with their path-integration state at zero, they follow a route memory for no more than 3 m, irrespective of the route-segment length. A possible explanation for these results is that if one guidance system is made to overshoot its endpoint, it can cause the other to be cut short.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andel D, Wehner R (2004) Path integration in desert ants, Cataglyphis: how to make a homing ant run away from home. Proc R Soc B 271:1485–1489

    Article  PubMed Central  PubMed  Google Scholar 

  • Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8(1):e1002336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bregy P, Sommer S, Wehner R (2008) Nest mark orientation versus vector navigation in desert ants. J Exp Biol 211:1868–1873

    Article  PubMed  Google Scholar 

  • Buehlmann C, Hansson WS, Knaden M (2012) Path integration controls nest-plume following in desert ants. Curr Biol 22:645–649

    Article  CAS  PubMed  Google Scholar 

  • Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853

    Article  PubMed  Google Scholar 

  • Burkhalter A (1972) Distance measuring as influenced by terrestrial cues in Cataglyphis bicolor. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin, pp 303–308

    Chapter  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol 151:521–543

    Article  Google Scholar 

  • Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Nat Acad Sci (USA) 107:11638–11643

    Article  CAS  Google Scholar 

  • Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932

    Article  CAS  PubMed  Google Scholar 

  • Collett M (2014) A desert ant’s memory of recent visual experience and the control of route guidance. P R Soc B. doi:10.1098/rspb.2014.0634

    Google Scholar 

  • Collett M, Collett TS (2009a) The learning and maintenance of local vectors in desert ant navigation. J Exp Biol 212:895–900

    Article  PubMed  Google Scholar 

  • Collett M, Collett TS (2009b) Local and global navigational coordinate systems in desert ants. J Exp Biol 212:901–905

    Article  PubMed  Google Scholar 

  • Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272

    Article  CAS  Google Scholar 

  • Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Collett M, Wehner R (2001) The guidance of desert ants by extended landmarks. J Exp Biol 204:1635–1639

    CAS  PubMed  Google Scholar 

  • Collett M, Harland D, Collett TS (2002) The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. J Exp Biol 205:807–814

    PubMed  Google Scholar 

  • Collett M, Collett TS, Chameron S, Wehner R (2003) Do familiar landmarks reset the global path integration system of desert ants? J Exp Biol 206:877–882

    Article  CAS  PubMed  Google Scholar 

  • Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800

    Article  CAS  PubMed  Google Scholar 

  • Cornetz MV (1910) Album faisant suite aux trajets de fourmis et retours aux Nid. Mémoires. Inst Gen Psychol Paris 2:1–67

    Google Scholar 

  • Durier V, Graham P, Collett TS (2004) Switching destinations: memory change in wood ants. J Exp Biol 207:2401–2408

    Article  PubMed  Google Scholar 

  • Esch HE, Burns JE (1996) Distance estimation by foraging honeybees. J Exp Biol 199:155–162

    PubMed  Google Scholar 

  • Fourcassié V, Henriques A, Fontella C (1999) Route fidelity and spatial orientation in the ant, Dinoponera gigantea (Hymenoptera, Formicidae), in a primary forest: a preliminary study. Sociobiol 34:505–524

    Google Scholar 

  • Fresneau D (1985) Individual foraging and path fidelity in a ponerine ant. Insect Soc 32:109–116

    Article  Google Scholar 

  • Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937

    Article  CAS  PubMed  Google Scholar 

  • Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol 206:535–541

    Article  PubMed  Google Scholar 

  • Harris RA, Graham P, Collett TS (2007) Visual cues for the retrieval of landmark memories by navigating wood ants. Curr Biol 17:93–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knaden M, Wehner R (2004) Path integration in desert ants controls aggressiveness. Science 305:60

    Article  CAS  PubMed  Google Scholar 

  • Knaden M, Lange C, Wehner R (2006) The importance of procedural knowledge in desert-ant navigation. Curr Biol 16:R916–R917

    Article  CAS  PubMed  Google Scholar 

  • Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12

    Article  PubMed  Google Scholar 

  • Legge EL, Wystrach A, Spetch ML, Cheng K (2014) Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J Exp Biol 217:4159–4166

    Article  PubMed  Google Scholar 

  • Lent DD, Graham P, Collett TS (2010) Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features. Proc Natl Acad Sci (USA) 107:16348–16353

    Article  CAS  Google Scholar 

  • Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954

    Article  Google Scholar 

  • Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwiss. 94:589–594

    Article  PubMed  Google Scholar 

  • Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812

    Article  PubMed  Google Scholar 

  • Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants Myrmecia croslandi. Proc R Soc B 280:20130683

    Article  PubMed Central  PubMed  Google Scholar 

  • Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370

    Article  PubMed  Google Scholar 

  • Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use self-induced optic flow to measure distances traveled. J Comp Physiol A 177:21–27

    Article  Google Scholar 

  • Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R (2000) Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J Exp Biol 203:1113–1121

    CAS  PubMed  Google Scholar 

  • Santschi F (1913) Comment s’orientent les fourmis. Rev Suisse Zool 21:347–425

    Google Scholar 

  • Sommer S, Wehner R (2004) The ant’s estimation of distance travelled: experiments with desert ants Cataglyphis fortis. J Comp Physiol A 190(1):1–6

    Article  CAS  Google Scholar 

  • Sommer S, von Beeren C, Wehner R (2008) Multiroute memories in desert ants. Proc Nat Acad Sci (USA) 105:317–322

  • Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–244

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees en route to the goal: visual flight control and odometry. J Exp Biol 200:2513–2522

    PubMed  Google Scholar 

  • Wehner R, Rossel S (1985) The bees’ celestial compass—a case-study in behavioral neurobiology. Forts Zool 31:11–53

    Google Scholar 

  • Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera, Formicidae). In: Lindauer M (ed) Information processing in animals. Fischer, Stuttgart, pp 1–79

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312(5782):1965–1967

    Article  CAS  PubMed  Google Scholar 

  • Wystrach A, Schwarz S (2013) Ants use a predictive mechanism to compensate for passive displacements by wind. Curr Biol 23(24):R1083–R1085

    Article  CAS  PubMed  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215(1):44–55

    Article  PubMed  Google Scholar 

  • Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We and many others owe a debt of gratitude to Rüdiger Wehner for his introduction to Cataglyphis, the intriguing problems that they present and the joys and frustrations of studying them.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas S. Collett or Matthew Collett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collett, T.S., Collett, M. Route-segment odometry and its interactions with global path-integration. J Comp Physiol A 201, 617–630 (2015). https://doi.org/10.1007/s00359-015-1001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1001-z

Keywords

Navigation