Skip to main content

Advertisement

Log in

Role of dopamine in distal retina

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi A, Nogi T, Ebihara S (1998) Phase-relationship and mutual effects between circadian rhythms of ocular melatonin and dopamine in the pigeon. Brain Res 792:361–369

    PubMed  CAS  Google Scholar 

  • Adachi-Usami E, Ikeda H, Satoh H (1990) Haloperidol delays visually evoked cortical potentials but not electroretinograms in mice. J Ocul Pharmacol 6:203–210

    PubMed  CAS  Google Scholar 

  • Akopian A, Witkovsky P (1996) D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J Neurophysiol 76:1828–1835

    PubMed  CAS  Google Scholar 

  • Ammermüller J, Weiler R, Perlman I (1995) Short-term effects of dopamine on photoreceptors, luminosity- and chromaticity-horizontal cells in the turtle retina. Vis Neurosci 12:403–412

    PubMed  Google Scholar 

  • Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132:1128–1145

    PubMed  Google Scholar 

  • Asare MN, Nelson R, Connaughton VP (2005) Effects of dopamine on glutamate responses in horizontal and bipolar cells isolated from zebrafish retina. Invest Ophthalmol Vis Sci 46:E605

    Google Scholar 

  • Baldridge WH, Ball AK (1991) Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas. Vis Neurosci 7:441–450

    PubMed  CAS  Google Scholar 

  • Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395

    PubMed  CAS  Google Scholar 

  • Bartel P, Blom M, Robinson E, Van der Meyden C, Sommers DO, Becker P (1990) Effects of chlorpromazine on pattern and flash ERGs and VEPs compared to oxazepam and the placebo in normal subjects. Electroencephalogr Clin Neurophysiol 77:330–339

    PubMed  CAS  Google Scholar 

  • Bartell PA, Miranda-Anaya M, McIvor W, Menaker M (2007) Interactions between dopamine and melatonin organize circadian rhythmicity in the retina of the green iguana. J Biol Rhythms 22:515–523

    PubMed  CAS  Google Scholar 

  • Barton AC, Black LE, Sibley DR (1991) Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells. Mol Pharmacol 39:650–658

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    PubMed  CAS  Google Scholar 

  • Behrens UD, Wagner HJ (1995) Localization of dopamine D1-receptors in vertebrate retinae. Neurochem Int 27:497–507

    PubMed  CAS  Google Scholar 

  • Behrens UD, Wagner HJ, Kirsch M (1992) cAMP-mediated second messenger mechanisms are involved in spinule formation in teleost cone horizontal cells. Neurosci Lett 147:93–96

    PubMed  CAS  Google Scholar 

  • Besharse JC, Iuvone PM (1992) Is dopamine a light-adaptive or a dark-adaptive modulator in retina? Neurochem Int 20:193–199

    PubMed  CAS  Google Scholar 

  • Biedermann B, Frohlich E, Grosche J, Wagner HJ, Reichenbach A (1995) Mammalian Müller (glial) cells express functional D2 dopamine receptors. NeuroReport 6:609–612

    PubMed  CAS  Google Scholar 

  • Birch DG, Berson EL, Sandberg MA (1984) Diurnal rhythm in the human rod ERG. Invest Ophthalmol Vis Sci 25:236–238

    PubMed  CAS  Google Scholar 

  • Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HW, Lew JY, He X, Watson S, Tengroth B, Fuxe K (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 12:37–50

    PubMed  CAS  Google Scholar 

  • Bloomfield SA, Dacheux R (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384

    PubMed  CAS  Google Scholar 

  • Boatright JH, Hoel MJ, Iuvone PM (1989) Stimulation of endogenous dopamine release and metabolism in amphibian retina by light- and K+-evoked depolarization. Brain Res 482:164–168

    PubMed  CAS  Google Scholar 

  • Boatright JH, Rubim NM, Iuvone PM (1994) Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Vis Neurosci 11:1013–1018

    PubMed  CAS  Google Scholar 

  • Bodis-Wollner I, Marx MS, Ghilardi MF (1989) Systemic haloperidol administration increases the amplitude of the light- and dark-adapted ERG in the monkey. Clin Vis Sci 4:19–26

    Google Scholar 

  • Boelen MK, Boelen MG, Marshak DW (1998) Light-stimulated release of dopamine from the primate retina is blocked by 1-2-amino-4-phosphonobutyric acid (APB). Vis Neurosci 15:97–103

    PubMed  CAS  Google Scholar 

  • Bornstein O, Twig G, Benda J, Weiler R, Perlman I (2002) Dynamic changes in the receptive fields of L1-type horizontal cells in the retina of the turtle Mauremys caspica. Vis Neurosci 19:621–632

    PubMed  CAS  Google Scholar 

  • Brandenburg J, Bobbert AC, Eggelmeyer F (1983) Circadian changes in the response of the rabbits retina to flashes. Behav Brain Res 7:113–123

    PubMed  CAS  Google Scholar 

  • Brann MR, Young WS 3rd (1986) Dopamine receptors are located on rods in bovine retina. Neurosci Lett 69:221–226

    PubMed  CAS  Google Scholar 

  • Burguera JA, Vilela C, Traba A, Ameave Y, Vallet M (1990) The electroretinogram and visual evoked potentials in patients with Parkinson’s disease. Arch Neurobiol (Madr) 53:1–7

    CAS  Google Scholar 

  • Burnside B (2001) Light and circadian regulation of retinomotor movement. Prog Brain Res 131:477–485

    PubMed  CAS  Google Scholar 

  • Burnside B, Wang E, Pagh-Roehl K, Rey H (1993) Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine. Exp Eye Res 57:709–722

    PubMed  CAS  Google Scholar 

  • Cameron MA, Barnard AR, Hut RA, Bonnefont X, van der Horst GT, Hankins MW, Lucas RJ (2008) Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J Biol Rhythms 23:489–501

    PubMed  Google Scholar 

  • Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29:761–767

    PubMed Central  PubMed  CAS  Google Scholar 

  • Citron MC, Erinoff L, Rickman DW, Brecha NC (1985) Modification of electroretinograms in dopamine-depleted retinas. Brain Res 345:186–191

    PubMed  CAS  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 32:281–307

    Google Scholar 

  • Cohen AI, Blazynski C (1990) Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4:43–52

    PubMed  CAS  Google Scholar 

  • Cohen JL, Dowling JE (1983) The role of the retinal interplexiform cell: effects of 6-hydroxydopamine on the spatial properties of carp horizontal cells. Brain Res 264:307–310

    PubMed  CAS  Google Scholar 

  • Cohen AI, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci USA 89:12093–12097

    PubMed Central  PubMed  CAS  Google Scholar 

  • Contini M, Lin B, Kobayashi K, Okano H, Masland RH, Raviola E (2010) Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retina. J Comp Neurol 518:2035–2050

    PubMed Central  PubMed  Google Scholar 

  • Critz SD, Marc RE (1992) Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina. Vis Neurosci 9:271–278

    PubMed  CAS  Google Scholar 

  • Cunningham JR, Neal MJ (1983) Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina. J Physiol 336:563–577

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dacheux RF, Raviola E (1986) The rod pathway in the rabbit: a depolarizing bipolar and amacrine cell. J Neurosci 6:331–345

    PubMed  CAS  Google Scholar 

  • De Juan J, Garcia M, Cuenca N (1996) Formation and dissolution of spinules and changes in nematosome size require optic nerve integrity in black bass (Micropterus salmoides) retina. Brain Res 707:213–220

    PubMed  Google Scholar 

  • De Mei C, Ramos M, Iitaka C, Borrelli E (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9:53–58

    PubMed Central  PubMed  Google Scholar 

  • Dearry A, Burnside B (1986) Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors. J Neurochem 46:1006–1021

    PubMed  CAS  Google Scholar 

  • Dearry A, Edelman JL, Miller S, Burnside B (1990) Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors. J Neurochem 54:1367–1378

    PubMed  CAS  Google Scholar 

  • Dearry A, Falardeau P, Shores C, Caron MG (1991) D2 dopamine receptors in the human retina: cloning of cDNA and localization of mRNA. Cell Mol Neurobiol 11:437–453

    PubMed  CAS  Google Scholar 

  • Demb JB, Singer JH (2012) Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci 29:51–60

    PubMed Central  PubMed  Google Scholar 

  • Denis P, Elena PP, Nordmann JP, Saraux H, Lapalus P (1990) Autoradiographic localization of D1 and D2 dopamine binding sites in the human retina. Neurosci Lett 116:81–86

    PubMed  CAS  Google Scholar 

  • Derouiche A, Asan E (1999) The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies. Eur J Neurosci 11:1391–1402

    PubMed  CAS  Google Scholar 

  • Dick E, Miller RF, Daucheux RF (1979) Neuronal origin of the b- and d-waves in the I-type ERG. Invest Ophthalmol Vis Sci (Suppl) 18:34

    Google Scholar 

  • Djamgoz MB, Wagner HJ (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochem Int 20:139–191

    PubMed  CAS  Google Scholar 

  • Djamgoz MB, Kirsch M, Wagner HJ (1989) Haloperidol suppresses light induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina. Neurosci Lett 107:200–204

    PubMed  CAS  Google Scholar 

  • Djamgoz MB, Fitzgerald EM, Yamada M (1996) Spectral plasticity of H1 horizontal cells in carp retina: independent modulation by dopamine and light-adaptation. Eur J Neurosci 8:1571–1579

    PubMed  CAS  Google Scholar 

  • Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM (2013) The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci 70:3435–3447

    PubMed  CAS  Google Scholar 

  • Dong CJ, McReynolds JS (1991) The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina. J Physiol 440:291–309

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dorenbos R, Contini M, Hirasawa H, Gustincich S, Raviola E (2007) Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci 24:573–580

    PubMed  Google Scholar 

  • Douglas RH, Wagner HJ, Zaunreiter M, Behrens UD, Djamgoz MB (1992) The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Vis Neurosci 9:335–343

    PubMed  CAS  Google Scholar 

  • Dowling JE (2012) The retina: an approachable part of the brain (revised edition). The Belknap press of Harvard University Press, Cambridge

    Google Scholar 

  • Doyle SE, Grace MS, McIvor W, Menaker M (2002a) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601

    PubMed  Google Scholar 

  • Doyle SE, McIvor WE, Menaker M (2002b) Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 83:211–219

    PubMed  CAS  Google Scholar 

  • Drujan BD, Negishi K, Laufer M (1980) Studies on putative neurotransmitters in the distal retina. Neurochem Int 1C:143–150

    PubMed  CAS  Google Scholar 

  • Elena PP, Denis P, Kosina-Boix M, Lapalus P (1989) Dopamine receptors in rabbit and rat eye: characterization and localization of DA1 and DA2 binding sites. Curr Eye Res 8:75–83

    PubMed  CAS  Google Scholar 

  • Esposti F, Johnston J, Rosa JM, Leung KM, Lagnado L (2013) Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 79:97–110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fan SF, Yazulla S (2005) Reciprocal inhibition of voltage-gated potassium currents (IK(V)) by activation of cannabinoid CB1 and dopamine D1 receptors in ON bipolar cells of goldfish retina. Vis Neurosci 22:55–63

    PubMed  Google Scholar 

  • Filipová M, Balík J, Filip V, Rodný J, Krejcová H (1979) Electroretinographic changes in patients with parkinsonism treated with various classes of antiparkinsonian drugs. Act Nerv Super (Praha) 21:136–138

    Google Scholar 

  • Firth SI, Morgan IG, Boelen MK (1997) Localization of D1 dopamine receptors in the chicken retina. Aust N Z J Ophthalmol 25(Suppl 1):S64–S66

    PubMed  Google Scholar 

  • Fornaro P, Castrogiovanni P, Perossini M, Placidi GF, Cavallacci G (1980) Electroretinography (ERG) as a tool of investigation in human psychopharmacology. Electroretinographic changes induced by a combination of carbi-dopa and levo-dopa. Acta Neurol (Napoli) 2:293–299

    CAS  Google Scholar 

  • Frederick JM, Rayborn ME, Laties AM, Lam DM, Hollyfield JG (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210:65–79

    PubMed  CAS  Google Scholar 

  • Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, London, pp 139–183

    Google Scholar 

  • Fröhlich E, Negishi K, Wagner HJ (1995) The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish. Vis Neurosci 12:359–369

    PubMed  Google Scholar 

  • Fujikado T (1994) The effect of dopamine on the response to pattern stimulation—study of the chick ERG. Jpn J Ophthalmol 38:368–374

    PubMed  CAS  Google Scholar 

  • Gardner B, Liu ZF, Jiang D, Sibley DR (2001) The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 59:310–321

    PubMed  CAS  Google Scholar 

  • Gibson CJ (1990) A simple perfusion system for measuring endogenous retinal dopamine release. J Neurosci Methods 32:75–79

    PubMed  CAS  Google Scholar 

  • Gibson CJ (1992) Tyrosine augments dopamine release in stimulated rat retina. Brain Res 595:201–205

    PubMed  CAS  Google Scholar 

  • Godley BF, Wurtman RJ (1988) Release of endogenous dopamine from the superfused rabbit retina in vitro: effect of light stimulation. Brain Res 452:393–395

    PubMed  CAS  Google Scholar 

  • Gottlob I, Schneider E, Heider W, Skrandies W (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66:349–357

    PubMed  CAS  Google Scholar 

  • Gottlob I, Weghaupt H, Vass C (1990) Effect of levodopa on the human luminance electroretinogram. Invest Ophthalmol Vis Sci 31:1252–1258

    PubMed  CAS  Google Scholar 

  • Gottvall E, Textorius O (2003) Concentration-dependent effects of dopamine on the direct current electroretinogram of pigmented rabbits during prolonged intermittent recording. Doc Ophthalmol 106:161–169

    PubMed  Google Scholar 

  • Gustincich S, Feigenspan A, Wu DK, Koopman LJ, Raviola E (1997) Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18:723–736

    PubMed  CAS  Google Scholar 

  • Gustincich S, Contini M, Gariboldi M, Puopolo M, Kadota K, Bono H, LeMieux J, Walsh P, Carninci P, Hayashizaki Y, Okazaki Y, Raviola E (2004) Gene discovery in genetically labeled single dopaminergic neurons of the retina. Proc Natl Acad Sci USA 101:5069–5074

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haamedi SN, Djamgoz MB (2002) Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide. J Comp Neurol 449:120–128

    PubMed  CAS  Google Scholar 

  • Hamasaki DI, Trattler B, Hajek AS (1986) Light ON depresses and light OFF enhances the release of dopamine from the cat’s retina. Neurosci Lett 68:112–116

    PubMed  CAS  Google Scholar 

  • Hampson EC, Weiler R, Vaney DI (1994) pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proc Biol Sci 255:67–72

    PubMed  CAS  Google Scholar 

  • Hankins MW, Ikeda H (1991) Non-NMDA type excitatory amino acid receptors mediate rod input to horizontal cells in the isolated rat retina. Vis Res 31:609–617

    PubMed  CAS  Google Scholar 

  • Hankins MW, Jones RJ, Ruddock KH (1998) Diurnal variation in the b-wave implicit time of the human electroretinogram. Vis Neurosci 15:55–67

    PubMed  CAS  Google Scholar 

  • Hankins MW, Jones SR, Jenkins A, Morland AB (2001) Diurnal daylight phase affects the temporal properties of both the b-wave and d-wave of the human electroretinogram. Brain Res 889:339–343

    PubMed  CAS  Google Scholar 

  • Hare WA, Owen WG (1995) Similar effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander. Vis Neurosci 12:443–455

    PubMed  CAS  Google Scholar 

  • Harnois C, Di Paolo T (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 31:2473–2475

    PubMed  CAS  Google Scholar 

  • Harsanyi K, Mangel SC (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci USA 89:9220–9224

    PubMed Central  PubMed  CAS  Google Scholar 

  • He S, Weiler R, Vaney DI (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 418:33–40

    PubMed  CAS  Google Scholar 

  • He Q, Xu HP, Wang P, Tian N (2013) Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS ONE 8:e79625

    PubMed Central  PubMed  Google Scholar 

  • Hedden WL Jr, Dowling JE (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones. Proc R Soc Lond B Biol Sci 201:27–55

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Matthews G (1994) Dopamine enhances Ca2+ responses in synaptic terminals of retinal bipolar neurons. NeuroReport 5:729–732

    PubMed  CAS  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  CAS  Google Scholar 

  • Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72:101–110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hida E, Negishi K, Naka K-I (1984) Effects of dopamine on photopic L-type S-potentials in the catfish retina. J Neurosci Res 11:373–382

    PubMed  CAS  Google Scholar 

  • Hillman DW, Lin D, Burnside B (1995) Evidence for D4 receptor regulation of retinomotor movement in isolated teleost cone inner–outer segments. J Neurochem 64:1326–1335

    PubMed  CAS  Google Scholar 

  • Holopigian K, Clewner L, Seiple W, Kupersmith MJ (1994) The effects of dopamine blockade on the human flash electroretinogram. Doc Ophthalmol 86:1–10

    PubMed  CAS  Google Scholar 

  • Huppé-Gourgues F, Coude G, Lachapelle P, Casanova C (2005) Effects of intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram. Vis Res 45:137–145

    PubMed  Google Scholar 

  • Ito K, Haga T, Lameh J, Sadée W (1999) Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 260:112–119

    PubMed  CAS  Google Scholar 

  • Iuvone PM, Gan J (1994) Stimulation of inositol phosphate accumulation in retinal neurons via activation of D1-like dopamine receptors. Invest Ophthalmol Vis Sci 35:2154

    Google Scholar 

  • Ivanova TN, Alonso-Gomez AL, Iuvone PM (2008) Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res 1207:111–119

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jackson CR, Chaurasia SS, Zhou H, Haque R, Storm DR, Iuvone PM (2009) Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells. J Neurochem 109:148–157

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, Palmiter RD, Iuvone PM, McMahon DG (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359–9368

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jaffe MJ, Bruno G, Campbell G, Lavine RA, Karson CN, Weinberger DR (1987a) Ganzfeld electroretinographic findings in parkinsonism: untreated patients and the effect of levodopa intravenous infusion. J Neurol Neurosurg Psychiatry 50:847–852

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jaffe MJ, Levinson PD, Zimmlichman R, Coen JC, Karson CN, de Monasterio FM (1987b) The effect of metoclopramide on the Ganzfeld electroretinogram. Vis Res 27:1693–1700

    PubMed  CAS  Google Scholar 

  • Jagadeesh JM, Sanchez R (1981) Effects of apomorphine on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 21:620–624

    PubMed  CAS  Google Scholar 

  • Kawai F, Horiguchi M, Miyachi E (2011) Dopamine modulates the voltage response of human rod photoreceptors by inhibiting the h current. Invest Ophthalmol Vis Sci 52:4113–4117

    PubMed  CAS  Google Scholar 

  • Kim DY, Jung CS (2012) Gap junction contributions to the goldfish electroretinogram at the photopic illumination level. Korean J Physiol Pharmacol 16:219–224

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kirsch M, Wagner HJ, Djamgoz MB (1991) Dopamine and plasticity of horizontal cell function in the teleost retina: regulation of a spectral mechanism through D1-receptors. Vis Res 31:401–412

    PubMed  CAS  Google Scholar 

  • Kirsh M, Wagner HJ (1989) Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vis Res 29:147–154

    Google Scholar 

  • Klitten LL, Rath MF, Coon SL, Kim JS, Klein DC, Møller M (2008) Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res 87:471–477

    PubMed Central  PubMed  CAS  Google Scholar 

  • Knapp AG, Dowling JE (1987) Dopamine enhances excitatory amino acid-gated conductances in retinal horizontal cells. Nature 325:437–439

    PubMed  CAS  Google Scholar 

  • Ko F, Seeman P, Sun WS, Kapur S (2002) Dopamine D2 receptors internalize in their low-affinity state. NeuroReport 13:1017–1020

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Shirao Y, Tagawa S, Katoh K, Tamura T (1996) Effects of retinal intrinsic dopamine on the in vivo electroretinogram of rabbits. Nihon Ganka Gakkai Zasshi 100:111–117

    PubMed  CAS  Google Scholar 

  • Kohler K, Weiler R (1990) Dopaminergic modulation of transient neurite outgrowth from horizontal cells of the fish retina is not mediated by cAMP. Eur J Neurosci 2:788–794

    PubMed  Google Scholar 

  • Kohler K, Kolbinger W, Kurz-Isler G, Weiler R (1990) Endogenous dopamine and cyclic events in the fish retina, II: correlation of retinomotor movement, spinule formation, and connexon density of gap junctions with dopamine activity during light/dark cycles. Vis Neurosci 5:417–428

    PubMed  CAS  Google Scholar 

  • Kolb H (1995) Roles of amacrine cells. In: Kolb H, Nelson R, Fernandez E (eds) Webvision. The organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City. http://webvision.med.utah.edu/

  • Kolb H, Cuenca N, Wang HH, Dekorver L (1990) The synaptic organization of the dopaminergic amacrine cell in the cat retina. J Neurocytol 19:343–366

    PubMed  CAS  Google Scholar 

  • Kolb H, Netzer E, Ammermüller J (1997) Neural circuitry and light responses of the dopamine amacrine cell of the turtle retina. Mol Vis 10:3–6

    Google Scholar 

  • Kolbinger W, Weiler R (1993) Modulation of endogenous dopamine release in the turtle retina: effects of light, calcium, and neurotransmitters. Vis Neurosci 10:1035–1041

    PubMed  CAS  Google Scholar 

  • Kolbinger W, Wagner D, Wagner HJ (1996) Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals. Cell Tissue Res 285:445–451

    PubMed  CAS  Google Scholar 

  • Koulen P (1999) Postnatal development of dopamine D1 receptor immunoreactivity in the rat retina. J Neurosci Res 56:397–404

    PubMed  CAS  Google Scholar 

  • Kramer SG (1971) Dopamine: a retinal neurotransmitter I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest Ophthal Vis Sci 10:438–452

    CAS  Google Scholar 

  • Krempels DM, Hamasaki DI, Rockwood EJ (1986) Effect of light and neurotransmitter antagonists on the release of dopamine from the pigeon’s retina. Invest Ophthal Vis Sci (suppl) 27:231

    Google Scholar 

  • Krizaj D (2000) Mesopic state: cellular mechanisms involved in pre- and post-synaptic mixing of rod and cone signals. Microsc Res Tech 50:347–359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D, Akopian A, Witkovsky P (1994) The effects of l-glutamate, AMPA, quisqualate, and kainate on retinal horizontal cells depend on adaptational state: implications for rod–cone interactions. J Neurosci 14:5661–5671

    PubMed  CAS  Google Scholar 

  • Krizaj D, Gábriel R, Owen WG, Witkovsky P (1998) Dopamine D2 receptor-mediated modulation of rod–cone coupling in the Xenopus retina. J Comp Neurol 398:529–538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krizaj D, Vu T, Copenhagen DR (1999) On the shaping, modulation and synaptic transmission of rod and cone signals. In: Toyoda J, Murakami M, Kaneko A, Saito T (eds) The retinal basis of vision. Elsevier Press, Amsterdam, pp 7–83

    Google Scholar 

  • Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526

    PubMed  CAS  Google Scholar 

  • Kubrusly RC, Panizzutti R, Gardino PF, Stutz B, Reis RA, Ventura AL, de Mello MC, de Mello FG (2008) Expression of functional dopaminergic phenotype in purified cultured Müller cells from vertebrate retina. Neurochem Int 53:63–70

    PubMed  CAS  Google Scholar 

  • Kupenova P, Belcheva S (1981) Effects of haloperidol, methylergometrine and phentolamine on the frog ERG. Experientia 37:852–854

    PubMed  CAS  Google Scholar 

  • Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci 12:390–402

    PubMed  CAS  Google Scholar 

  • Lasater EM, Dowling JE (1982) Carp horizontal cells in culture respond selectively to l-glutamate and its agonists. Proc Natl Acad Sci USA 79:936–940

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lasater EM, Dowling JE (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA 82:3025–3029

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277:46010–46019

    PubMed  CAS  Google Scholar 

  • Lavoie J, Gagné AM, Lavoie MP, Sasseville A, Charron MC, Hébert M (2010) Circadian variation in the electroretinogram and the presence of central melatonin. Doc Ophthalmol 120:265–272

    PubMed  CAS  Google Scholar 

  • Lavoie J, Illiano P, Sotnikova TD, Gainetdinov RR, Beaulieu JM, Hébert M (2014) The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders. Biol Psychiatry 75:479–486

    Google Scholar 

  • Li L, Dowling JE (2000) Effects of dopamine depletion on visual sensitivity of zebrafish. J Neurosci 20:1893–1903

    PubMed  CAS  Google Scholar 

  • Li H, O’Brien J (2012) Regulation of gap junctional coupling in photoreceptors. In: Akutagawa E, Ozaki K (eds) Photoreceptors: physiology, types and abnormalities. Nova Science, Hauppauge, pp 97–112

    Google Scholar 

  • Li P, Shah S, Huang L, Carr AL, Gao Y, Thisse C, Thisse B, Li L (2007) Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn 236:1339–1346

    PubMed  CAS  Google Scholar 

  • Li H, Chuang AZ, O’Brien J (2009) Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina. J Neurosci 29:15178–15186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O’Brien J (2013) Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 33:3135–3150

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lin ZS, Yazulla S (1994) Depletion of retinal dopamine does not affect the ERG b-wave increment threshold function in goldfish in vivo. Vis Neurosci 11:695–702

    PubMed  CAS  Google Scholar 

  • Lorenc-Duda A, Berezińska M, Urbańska A, Gołembiowska K, Zawilska JB (2009) Dopamine in the Turkey retina—an impact of environmental light, circadian clock, and melatonin. J Mol Neurosci 38:12–18

    PubMed  CAS  Google Scholar 

  • Lu J, Zoran MJ, Cassone VM (1995) Daily and circadian variation in the electroretinogram of the domestic fowl: effects of melatonin. J Comp Physiol A 177:299–306

    PubMed  CAS  Google Scholar 

  • Luft WA, Iuvone PM, Stell WK (2004) Spatial, temporal, and intensive determinants of dopamine release in the chick retina. Vis Neurosci 21:627–635

    PubMed  CAS  Google Scholar 

  • Maguire G, Werblin FS (1994) Dopamine enhances a glutamate-gated ionic current in OFF bipolar cells of the tiger salamander retina. J Neurosci 14:6094–6101

    PubMed  CAS  Google Scholar 

  • Mangel SC, Dowling JE (1985) Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229:1107–1109

    PubMed  CAS  Google Scholar 

  • Mangel SC, Dowling JE (1987) The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proc R Soc Lond B Biol Sci 23:91–121

    Google Scholar 

  • Manglapus MK, Uchiyama H, Buelow NF, Barlow RB (1998) Circadian rhythms of rod–cone dominance in the Japanese quail retina. J Neurosci 18:4775–4784

    PubMed  CAS  Google Scholar 

  • Manglapus MK, Iuvone PM, Underwood H, Pierce ME, Barlow RB (1999) Dopamine mediated circadian rhythms of rod–cone dominance in the Japanese quail retina. J Neurosci 19:4132–4141

    PubMed  CAS  Google Scholar 

  • Marmor MF, Hock P, Schechter G, Pfefferbaum A, Berger PA, Maurice R (1988) Oscillatory potentials as a marker for dopaminergic disease. Doc Ophthalmol 69:255–261

    PubMed  CAS  Google Scholar 

  • Marshak DW (2001) Synaptic input to dopaminergic neurons in mammalian retina. In: Kolb H, Ripps H, Wu S (eds) Concepts and challenges in retinal physiology. Elsevier Sci B.V., Netherlands, pp 83–91

    Google Scholar 

  • Massey SC, Redburn DA (1987) Transmitter circuits in the vertebrate retina. Progr Neurobiol 28:55–96

    CAS  Google Scholar 

  • McCormack CA, Burnside B (1992) A role for endogenous dopamine in circadian regulation of retinal cone movement. Exp Eye Res 55:511–520

    PubMed  CAS  Google Scholar 

  • McCormack CA, Burnside B (1993) Light and circadian modulation of teleost retinal tyrosine hydroxylase activity. Invest Ophthalmol Vis Sci 34:1853–1860

    PubMed  CAS  Google Scholar 

  • McCormack CA, McDonnell MT (1994) Circadian regulation of teleost retinal cone movements in vitro. J Gen Physiol 103:487–499

    PubMed  CAS  Google Scholar 

  • McGoogan JM, Cassone VM (1999) Circadian regulation of chick electroretinogram: effects of pinealectomy and exogenous melatonin. Am J Physiol 277:R1418–R1427

    PubMed  CAS  Google Scholar 

  • McMahon DG, Brown DR (1994) Modulation of gap-junction channel gating at zebrafish retinal electrical synapses. J Neurophysiol 72:2257–2268

    PubMed  CAS  Google Scholar 

  • McMahon DG, Mattson MP (1996) Horizontal cell electrical coupling in the giant danio: synaptic modulation by dopamine and synaptic maintenance by calcium. Brain Res 718:89–96

    PubMed  CAS  Google Scholar 

  • Megaw PL, Boelen MG, Morgan IG, Boelen MK (2006) Diurnal patterns of dopamine release in chicken retina. Neurochem Int 48:17–23

    PubMed  CAS  Google Scholar 

  • Melamed E, Frucht Y, Lemor M, Uzzan A, Rosenthal Y (1984) Dopamine turnover in rat retina: a 24-hour light dependent rhythm. Brain Res 305:148–151

    PubMed  CAS  Google Scholar 

  • Mills SL, Xia X-B, Hoshi H, Firth SI, Rice ME, Frishman LJ, Marshak DW (2007) Dopaminergic modulation of tracer coupling in a ganglion–amacrine cell network. Vis Neurosci 24:593–608

    PubMed Central  PubMed  Google Scholar 

  • Miranda-Anaya M, Bartell PA, Yamazaki S, Menaker M (2000) Circadian rhythm of ERG in iguana: role of the pineal. J Biol Rhythms 15:163–171

    PubMed  CAS  Google Scholar 

  • Miranda-Anaya M, Bartell PA, Menaker M (2002) Circadian rhythm of iguana electroretinogram: the role of dopamine and melatonin. J Biol Rhythms 17:526–538

    PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Mizota A, Adachi-Usami E (1993) Electroretinographic effects of haloperidol on the mouse retina. Doc Ophthalmol 85:151–160

    PubMed  CAS  Google Scholar 

  • Mora-Ferrer C, Behrend K (2004) Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG. Vis Res 44:2067–2081

    PubMed  CAS  Google Scholar 

  • Mora-Ferrer C, Yazulla S, Studholme KM, Haak-Frendscho M (1999) Dopamine D1-receptor immunolocalization in goldfish retina. J Comp Neurol 411:705–714

    PubMed  CAS  Google Scholar 

  • Muresan Z, Besharse J (1993) D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. J Comp Neurol 331:149–160

    PubMed  CAS  Google Scholar 

  • Naarendorp F, Sieving PA (1991) The scotopic threshold response of the cat ERG is suppresses selectively by GABA and glycine. Vis Res 31:1–15

    PubMed  CAS  Google Scholar 

  • Naarendorp F, Hitchock PF, Sieving PA (1993) Dopaminergic modulation of rod pathway signals does not affect the scotopic ERG of cat at dark-adapted threshold. J Neurophysiol 70:1681–1691

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Kurasaki S, Masuda T, Ukai K, Kubo S, Kadono H (1988) Effects of some psychotropic drugs on the b-wave of the electroretinogram in isolated rabbit retina. Jpn J Pharmacol 46:97–100

    PubMed  CAS  Google Scholar 

  • Negishi K, Drujan BD (1979) Effects of catecholamines and related compounds on horizontal cells in the fish retina. J Neurosci Res 4:311–334

    PubMed  CAS  Google Scholar 

  • Newkirk GS, Hoon M, Wong RO, Detwiler PB (2013) Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J Neurophysiol 110:536–552

    PubMed  CAS  Google Scholar 

  • Nguyen-Legros J (1988) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10:137–144

    PubMed  CAS  Google Scholar 

  • Nguyen-Legros J, Chanut E, Versaux-Botteri C, Simon A, Trouvin JH (1996) Dopamine inhibits melatonin synthesis in photoreceptor cells through a D2-like receptor subtype in the rat retina: biochemical and histochemical evidence. J Neurochem 67:2514–2520

    PubMed  CAS  Google Scholar 

  • Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49:1280–1287

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nir I, Haque R, Iuvone PM (2000) Diurnal metabolism of dopamine in the mouse retina. Brain Res 870:118–125

    PubMed  CAS  Google Scholar 

  • Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM (2002) Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 22:2063–2073

    PubMed  CAS  Google Scholar 

  • Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17:8147–8155

    PubMed  CAS  Google Scholar 

  • Nowak JZ, Sek B, Schorderet M (1991) Dark-induced supersensitivity of dopamine D-1 and D-2 receptors in rat retina. NeuroReport 2:429–432

    PubMed  CAS  Google Scholar 

  • Nozaki S, Wakakura M, Ishikawa S (1983) Circadian rhythm of human electroretinogram. Jpn J Ophthalmol 27:346–352

    PubMed  CAS  Google Scholar 

  • Oliver P, Jolicoeur FB, Lafond G, Drumheller A, Brunette JR (1987) Effects of retinal dopamine depletion on the rabbit electroretinogram. Doc Ophthalmol 66:359–371

    PubMed  CAS  Google Scholar 

  • Parkinson D, Rando RR (1983) Effect of light on dopamine turnover and metabolism in rabbit retina. Vis Sci 24:284–288

    Google Scholar 

  • Patel S, Chapman KL, Marston D, Hutson PH, Ragan CI (2003) Pharmacological and functional characterisation of dopamine D4 receptors in the rat retina. Neuropharmacology 44:1038–1046

    PubMed  CAS  Google Scholar 

  • Perlman I (1995) The electroretinogram: ERG. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City. http://webvision.med.utah.edu/

  • Perlman I, Ammermüller J (1994) Receptive-field size of L1 horizontal cells in the turtle retina: effects of dopamine and background light. J Neurophysiol 72:2786–2795

    PubMed  CAS  Google Scholar 

  • Perry B, George JS (2007) Dopaminergic modulation and rod contribution in the generation of oscillatory potentials in the tiger salamander retina. Vis Res 47:309–314

    PubMed  CAS  Google Scholar 

  • Pflug R, Nelson R, Huber S, Reitsamer H (2008) Modulation of horizontal cell function by dopaminergic ligands in mammalian retina. Vis Res 48:1383–1390

    PubMed  CAS  Google Scholar 

  • Piccolino M, Neyton J, Gerschenfeld HM (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina. J Neurosci 4:2477–2488

    PubMed  CAS  Google Scholar 

  • Piccolino M, Demontis G, Witkovsky P, Strettoi E, Cappagli GC, Porceddu ML, De Montis MG, Pepitoni S, Biggio G, Meller E, Bohmaker K (1989) Involvement of D1 and D2 dopamine receptors in the control of horizontal cell electrical coupling in the turtle retina. Eur J Neurosci 1:247–257

    PubMed  Google Scholar 

  • Pierce ME, Besharse JC (1985) Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol 86:671–689

    PubMed  CAS  Google Scholar 

  • Popova E (2014) Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light adapted eyes. J Neural Trans 121:233–244

    CAS  Google Scholar 

  • Popova E, Kupenova P (2011) Effects of dopamine D1 receptor blockade on the intensity-response function of ERG b- and d-waves under different conditions of light adaptation. Vis Res 51:1627–1636

    PubMed  CAS  Google Scholar 

  • Popova E, Kupenova P (2013) Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes. Vis Res 88:22–29

    PubMed  CAS  Google Scholar 

  • Pozdeyev NV, Lavrikova EV (2000) Diurnal changes of tyrosine, dopamine, and dopamine metabolites content in the retina of rats maintained at different lighting conditions. J Mol Neurosci 15:1–9

    PubMed  CAS  Google Scholar 

  • Puppala D, Maaswinkel H, Mason B, Legan SJ, Li L (2004) An in vivo microdialysis study of light/dark-modulation of vitreal dopamine release in zebrafish. J Neurocytol 33:193–201

    PubMed  CAS  Google Scholar 

  • Qian H, Ripps H (1992) Receptive field properties of rod-driven horizontal cells in the skate retina. J Gen Physiol 100:457–478

    PubMed  CAS  Google Scholar 

  • Rankin ML, Hazelwood LA, Free RB, Namkung Y, Rex EB, Roof RA, Sibley DR (2010) Molecular pharmacology of the dopamine receptors. In: Iversen LL, Dunnett SB, Iversen SD, Bjorklund A (eds) Dopamine handbook. Oxford University Press, New York, pp 63–87

    Google Scholar 

  • Reitsamer HA, Pflug R, Franz M, Huber S (2006) Dopaminergic modulation of horizontal-cell-axon-terminal receptive field size in the mammalian retina. Vis Res 46:467–474

    PubMed  CAS  Google Scholar 

  • Ribelayga C, Mangel SC (2007) Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock. Vis Neurosci 24:333–344

    PubMed  Google Scholar 

  • Ribelayga C, Mangel SC (2010) Identification of a circadian clock-controlled neural pathway in the rabbit retina. PLoS ONE 5:e11020

    PubMed Central  PubMed  Google Scholar 

  • Ribelayga C, Wang Y, Mangel SC (2002) Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J Physiol (Lond) 544:801–816

    CAS  Google Scholar 

  • Ribelayga C, Wang Y, Mangel SC (2004) A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 554:467–482

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod–cone coupling. Neuron 59:790–801

    PubMed  CAS  Google Scholar 

  • Rohrer B, Stell WK (1995) Localization of putative dopamine D2-like receptors in the chick retina, using in situ hybridization and immunocytochemistry. Brain Res 695:110–116

    PubMed  CAS  Google Scholar 

  • Rondou P, Haegeman G, Van Craenenbroeck K (2010) The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 67:1971–1986

    PubMed  CAS  Google Scholar 

  • Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci USA 103:9703–9708

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sakamoto K, Liu C, Tosini G (2004) Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem 90:1019–1024

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Liu C, Kasamatsu M, Iuvone PM, Tosini G (2006) Intraocular injection of kainic acid does not abolish the circadian rhythm of arylalkylamine N-acetyltransferase mRNA in rat photoreceptors. Mol Vis 12:117–124

    PubMed  CAS  Google Scholar 

  • Sato T, Yoneyama T, Kim HK, Suzuki TA (1987) Effect of dopamine and haloperidol on the c-wave and light peak of light-induced retinal responses in chick eye. Doc Ophthalmol 65:87–95

    PubMed  CAS  Google Scholar 

  • Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19:1203–1216

    PubMed  CAS  Google Scholar 

  • Schneider T, Zrenner E (1991) Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat. Exp Eye Res 52:425–430

    PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    PubMed  CAS  Google Scholar 

  • Sengupta A, Baba K, Mazzoni F, Pozdeyev NV, Strettoi E, Iuvone PM, Tosini G (2011) Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS ONE 6:e24483

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shaw AP, Collazo CR, Easterling K, Young CD, Karwoski CJ (1993) Circadian rhythm in the visual system of the lizard Anolis carolinensis. J Biol Rhythms 8:107–124

    PubMed  CAS  Google Scholar 

  • Shiells RA, Falk G (1985) Dopamine hyperpolarizes and reduces the light responses of rod ON-centre bipolar cells in the retina of the dogfish, Scyliorhinus canicula. Neurosci Lett 55:331–336

    PubMed  CAS  Google Scholar 

  • Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    PubMed  CAS  Google Scholar 

  • Skrandies W, Wässle H (1988) Dopamine and serotonin in cat retina: electroretinography and histology. Exp Brain Res 71:231–240

    PubMed  CAS  Google Scholar 

  • Starr MS (1975) The effects of various amino acids, dopamine and some convulsants on the electroretinogram of the rabbit. Exp Eye Res 21:79–87

    PubMed  CAS  Google Scholar 

  • Stella SL Jr, Thoreson WB (2000) Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 12:3537–3548

    PubMed  Google Scholar 

  • Stockton RA, Slaughter MM (1989) B-wave of the electroretinogram: a reflection of on-bipolar cell activity. J Gen Physiol 93:101–122

    PubMed  CAS  Google Scholar 

  • Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–741

    PubMed Central  PubMed  CAS  Google Scholar 

  • Teranishi T, Negishi K, Kato S (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301:243–246

    PubMed  CAS  Google Scholar 

  • Textorius O, Nilsson SE, Andersson BE (1989) Effects of intravitreal perfusion with dopamine in different concentrations on the DC electroretinogram and the standing potential of the albino rabbit eye. Doc Ophthalmol 73:149–162

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Stella SL Jr, Bryson EI, Clements J, Witkovsky P (2002) D2-like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina. Vis Neurosci 19:235–247

    PubMed  Google Scholar 

  • Tornqvist K, Yang XL, Dowling JE (1988) Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells. J Neurosci 8:2279–2288

    PubMed  CAS  Google Scholar 

  • Tran VT, Dickman M (1992) Differential localization of dopamine D1 and D2 receptors in rat retina. Invest Ophthalmol Vis Sci 33:1620–1626

    PubMed  CAS  Google Scholar 

  • Ueno S, Kondo M, Ueno M, Miyata K, Terasaki H, Miyake Y (2006) Contribution of retinal neurons to d-wave of primate photopic electroretinogram. Vis Res 46:658–664

    PubMed  Google Scholar 

  • Umino O, Lee Y, Dowling JE (1991) Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina. Vis Neurosci 7:451–458

    PubMed  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge´-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    PubMed  CAS  Google Scholar 

  • Veruki M (1997) Dopaminergic neurons in the rat retina express dopamine D2/3 receptors. Eur J Neurosci 9:1096–1100

    PubMed  CAS  Google Scholar 

  • Veruki ML, Wässle H (1996) Immunohistochemical localization of dopamine D1 receptors in rat retina. Eur J Neurosci 8:2286–2297

    PubMed  CAS  Google Scholar 

  • Vuvan T, Geffard M, Denis P, Simon A, Nguyen-Legros J (1993) Radioimmunoligand characterization and immunohistochemical localization of dopamine D2 receptors on rods in the rat retina. Brain Res 614:57–64

    PubMed  CAS  Google Scholar 

  • Wachtmeister L (1981) Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG). II. Glutamate-aspartate-and dopamine antagonists. Acta Ophthalmol (Cph) 59:247–258

    CAS  Google Scholar 

  • Wagner HJ (1980) Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. J Neurocytol 9:573–590

    PubMed  CAS  Google Scholar 

  • Wagner HJ, Djamgoz MB (1993) Spinules: a case for retinal synaptic plasticity. Trends Neurosci 16:201–206

    PubMed  CAS  Google Scholar 

  • Wagner HJ, Behrens UD, Zaunreiter M, Douglas RH (1992) The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system. Vis Neurosci 9:345–351

    PubMed  CAS  Google Scholar 

  • Wagner HJ, Luo BG, Ariano MA, Sibley DR, Stell WK (1993) Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies. J Comp Neurol 331(4):469–481

    PubMed  CAS  Google Scholar 

  • Walkembach J, Brüss M, Urban BW, Barann M (2005) Interactions of metoclopramide and ergotamine with human 5-HT3A receptors and human 5-HT reuptake carriers. Br J Pharmacol 146:543–552

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Harsanyi K, Mangel SC (1997) Endogenous activation of dopamine D2 receptors regulates dopamine release in the fish retina. J Neurophysiol 78:439–449

    PubMed  CAS  Google Scholar 

  • Weiler R, Akopian A (1992) Effects of background illuminations on the receptive field size of horizontal cells in the turtle retina are mediated by dopamine. Neurosci Lett 140:121–124

    PubMed  CAS  Google Scholar 

  • Weiler R, Kohler K, Kirsch M, Wagner HJ (1988) Glutamate and dopamine modulate synaptic plasticity in horizontal cell dendrites of fish retina. Neurosci Lett 87:205–209

    PubMed  CAS  Google Scholar 

  • Weiler R, Baldridge WH, Mangel SC, Dowling JE (1997) Modulation of endogenous dopamine release in the fish retina by light and prolonged darkness. Vis Neurosci 14:351–356

    PubMed  CAS  Google Scholar 

  • Wellis DP, Werblin FS (1995) Dopamine modulates GABA receptors mediating inhibition of calcium entry into and transmitter release from bipolar cell terminals in tiger salamander retina. J Neurosci 15:4748–4761

    PubMed  CAS  Google Scholar 

  • White MP, Hock PA (1992) Effects of continuous darkness on ERG correlates of disc shedding in rabbit retina. Exp Eye Res 54:173–180

    PubMed  CAS  Google Scholar 

  • Wioland N, Rudolf G, Bonaventure N (1990) Electrooculographic and electroretinographic study in the chicken after dopamine and haloperidol. Doc Ophthalmol 75:175–180

    PubMed  CAS  Google Scholar 

  • Wirz-Justice A, Da Prada M, Remé C (1984) Circadian rhythm in rat retinal dopamine. Neurosci Lett 45:21–25

    PubMed  CAS  Google Scholar 

  • Witkovsky P (2004) Dopamine ant retinal function. Doc Ophthalmol 108:17–40

    PubMed  Google Scholar 

  • Witkovsky P, Dearry A (1991) Functional roles of dopamine in the vertebrate retina. Prog Retin Res 11:247–292

    CAS  Google Scholar 

  • Witkovsky P, Stone S, Tranchina D (1989) Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs. J Neurophysiol 62:864–881

    PubMed  CAS  Google Scholar 

  • Witkovsky P, Nicholson C, Rice ME, Bohmaker K, Meller E (1993) Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc Natl Acad Sci USA 90:5667–5671

    PubMed Central  PubMed  CAS  Google Scholar 

  • Witkovsky P, Schmitz Y, Akopian A, Krizaj D, Tranchina D (1997) Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current. J Neurosci 17:7297–7306

    PubMed  CAS  Google Scholar 

  • Witkovsky P, Veisenberger E, LeSauter J, Yan L, Johnson M, Zhang DQ, McMahon D, Silver R (2003) Cellular location and circadian rhythm of expression of the biological clock gene period 1 in the mouse retina. J Neurosci 23:7670–7676

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. Ann NY Acad Sci 604:323–343

    PubMed  CAS  Google Scholar 

  • Wu WQ, McGoogan JM, Cassone VM (2000) Circadian regulation of visually evoked potentials in the domestic pigeon, Columba livia. J Biol Rhythms 15:317–328

    PubMed  CAS  Google Scholar 

  • Xin D, Bloomfield SA (1999) Dark- and light-induced changes in coupling between horizontal cells in mammalian retina. J Comp Neurol 405:75–87

    PubMed  CAS  Google Scholar 

  • Xu X, Karwoski CJ (1995) Current source density analysis of the electroretinographic d-wave of frog retina. J Neurophysiol 73:2459–2469

    PubMed  CAS  Google Scholar 

  • Yamada M, Saito T (1988) Effects of dopamine on bipolar cells in the carp retina. Biomed Res 9(suppl 2):125–130

    Google Scholar 

  • Yamada M, Shigematsu Y, Umetani Y, Saito T (1992) Dopamine decreases receptive field size of rod-driven horizontal cells in carp retina. Vis Res 32:1801–1807

    PubMed  CAS  Google Scholar 

  • Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015

    PubMed  CAS  Google Scholar 

  • Yanagida T, Koshimizu M, Kawasaki K, Yonemura D (1986) Microelectrode depth study of electrographic b- and d-waves in frog retina. Jpn J Ophthalmol 30:298–305

    PubMed  CAS  Google Scholar 

  • Yang XL (1991) Modulation of synaptic transmission in the retina. Doc Ophthalmol 76:377–387

    PubMed  CAS  Google Scholar 

  • Yang XL, Wu SM (1989) Modulation of rod–cone coupling by light. Science 244:352–354

    PubMed  CAS  Google Scholar 

  • Yang XL, Tornqvist K, Dowling JE (1988) Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness. J Neurosci 8:2269–2278

    PubMed  CAS  Google Scholar 

  • Yang CY, Lukasiewicz P, Maguire G, Werblin FS, Yazulla S (1991) Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. J Comp Neurol 312:19–32

    PubMed  CAS  Google Scholar 

  • Yang XL, Fan TX, Shen W (1994) Effects of prolonged darkness on light responsiveness and spectral sensitivity of cone horizontal cells in carp retina in vivo. J Neurosci 14:326–334

    PubMed  CAS  Google Scholar 

  • Yazulla S, Lin ZS (1995) Differential effects of dopamine depletion on the distribution of [3H]SCH 23390 and [3H]spiperone binding sites in the goldfish retina. Vis Res 35:1414–2409

    Google Scholar 

  • Yazulla S, Zucker CL (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Vis Neurosci 1:13–29

    PubMed  CAS  Google Scholar 

  • Yazulla S, Lin ZS, Studholme KM (1996) Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior. Vis Res 36:4045–4057

    PubMed  CAS  Google Scholar 

  • Yu CJ, Li L (2005) Dopamine modulates voltage-activated potassium currents in zebrafish retinal on bipolar cells. J Neurosci Res 82:368–376

    PubMed  CAS  Google Scholar 

  • Zawilska JB, Iuvone PM (1992) Melatonin synthesis in chicken retina: effect of kainic acid-induced lesions on the diurnal rhythm and D2-dopamine receptor-mediated regulation of serotonin N-acetyltransferase activity. Neurosci Lett 135:71–74

    PubMed  CAS  Google Scholar 

  • Zawilska JB, Nowak JZ (1997) Dopamine D4-like receptors in vertebrate retina: does the retina offer a model for the D4-receptor analysis? Pol J Pharmacol 49:201–211

    PubMed  CAS  Google Scholar 

  • Zawilska JB, Bednarek A, Berezińska M, Nowak JZ (2003) Rhythmic changes in metabolism of dopamine in the chick retina: the importance of light versus biological clock. J Neurochem 84:717–724

    PubMed  CAS  Google Scholar 

  • Zhang DQ, Zhou TR, McMahon DG (2007) Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27:692–699

    PubMed  Google Scholar 

  • Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105:14181–14186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang A-J, Jacoby R, Wu SM (2011) Light- and dopamine-regulated receptive field plasticity in primate horizontal cells. J Comp Neurol 519:2095–2104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Popova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, E. Role of dopamine in distal retina. J Comp Physiol A 200, 333–358 (2014). https://doi.org/10.1007/s00359-014-0906-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0906-2

Keywords

Navigation