Skip to main content
Log in

On the optimal allocation of prizes in best-of-three all-pay auctions

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

We study best-of-three all-pay auctions with two players who compete in three stages with a single match per stage. The first player to win two matches wins the contest. We assume that a prize sum is given, and show that if players are symmetric, the allocation of prizes does not have any effect on the players’ expected total effort. On the other hand, if players are asymmetric, in order to maximize the players’ expected total effort, independent of the players’ types, it is not optimal to allocate a single final prize to the winner. Instead, it is optimal to allocate intermediate prizes in the first stage or/and in the second stage in addition to the final prize. When the asymmetry of the players’ types is sufficiently high, it is optimal to allocate intermediate prizes in both two first stages and a final prize to the winner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barut Y, Kovenock D (1998) The symmetric multiple prize all-pay auction with complete information. Eur J Polit Econ 14:627–644

    Google Scholar 

  • Baye M, Kovenock D, de Vries C (1996) The all-pay auction with complete information. Econ Theor 8:291–305

    Google Scholar 

  • Clark D, Riis C (1996) A multi-winner nested rent-seeking contest. Public Choice 77:437–443

    Google Scholar 

  • Clark D, Riis C (1998) Influence and the discretionary allocation of several prizes. Eur J Polit Econ 14(4):605–625

    Google Scholar 

  • Feng X, Lu J (2018) How to split the pie: optimal rewards in dynamic multi-battle competitions. J Public Econ 160:82–95

    Google Scholar 

  • Ferrall C, Smith A (1999) A sequential game model of sports championship series: theory and estimation. Rev Econ Stat 81:704–719

    Google Scholar 

  • Fu Q, Lu J (2012) The optimal multi-stage contest. Econ Theor 51(2):351–382

    Google Scholar 

  • Fu Q, Lu J, Pan Y (2015) Team contests with multiple pairwise battles. Am Econ Rev 105(7):2120–2140

    Google Scholar 

  • Fudenberg D, Gilbert R, Stiglitz J, Tirole J (1983) Preemption, leapfrogging and competition in patent races. Eur Econo Rev 22:3–31

    Google Scholar 

  • Harris C, Vickers J (1985) Perfect equilibrium in a model of a race. Rev Econ Stud 52(2):193–209

    Google Scholar 

  • Harris C, Vickers J (1987) Racing with uncertainty. Rev Econ Stud 54(1):1–21

    Google Scholar 

  • Hillman A, Riley J (1989) Politically contestable rents and transfers. Econ Politics 1:17–39

    Google Scholar 

  • Iqbal H, Krumer A (2019) Discouragement effect and intermediate prizes in multi-stage contests: evidence from Davis Cup. Eur Econ Rev 118:364–381

    Google Scholar 

  • Jiang X (2018) Relative performance prizes and dynamic incentives in best-of-N contests. Rev Ind Organ 53(3):563–590

    Google Scholar 

  • Klumpp T, Polborn M (2006) Primaries and the new Hampshire effect. J Public Econ 90:1073–1114

    Google Scholar 

  • Konrad K, Kovenock D (2009) Multi-battle contests. Games Econ Behav 66:256–274

    Google Scholar 

  • Krumer A (2013) Best-of-two contests with psychological effects. Theor Decis 75(1):85–100

    Google Scholar 

  • Krumer A (2015) The order of games in a best-of-three Contest. J Sports Econ 16(2):185–200

    Google Scholar 

  • Lazear E, Rosen S (1981) Rank order tournaments as optimal labor contracts. J Polit Econ 89:841–864

    Google Scholar 

  • Mago S, Sheremeta R, Yates A (2013) Best-of three contest experiments: strategic versus psychological momentum. Int J Ind Organ 31(3):287–296

    Google Scholar 

  • Malueg D, Yates A (2006) Equilibria in rent-seeking contests with homogeneous success functions. Econ Theor 27(3):719–727

    Google Scholar 

  • Malueg D, Yates A (2010) Testing contest theory: evidence from best-of-three tennis matches. Rev Econ Stat 92:689–692

    Google Scholar 

  • Moldovanu B, Sela A (2001) The optimal allocation of prizes in contests. Am Econ Rev 91:542–558

    Google Scholar 

  • Moldovanu B, Sela A (2006) Contest architecture. J Econ Theory 126(1):70–97

    Google Scholar 

  • Moldovanu B, Sela A, Shi X (2012) Carrots and sticks: prizes and punishments in contests. Econ Inq 50(2):453–462

    Google Scholar 

  • Rosen S (1986) Prizes and incentives in elimination tournaments. Am Econ Rev 76:701–715

    Google Scholar 

  • Sela A (2011) Best-of-three all-pay auctions. Econ Lett 112(1):67–70

    Google Scholar 

  • Szymanski S (2003) The economic design of sporting contests. J Econ Lit 41(4):1137–1187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aner Sela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2

1. If condition 5 holds, the expected total effort given by (11) is

$$\begin{aligned} TE^{(B1)}= & {}\; TE^{(1B1)}+p_{1}^{(1B1)}TE^{(2)}+p_{2}^{(1B1)}TE^{(2B1)}+p_{1}^{(1B1)}p_{2}^{(2)}TE^{(3)}\nonumber \\&+p_{2}^{(1B1)}p_{1}^{(2B1)}TE^{(3)} \nonumber \\= & {}\; \frac{\alpha v_{2}}{2}\left( 1+\frac{\alpha v_{2}}{(v_{1}-\beta v_{2})-(v_{1}(1-\alpha )-v_{2}(2-2\alpha -\beta ))}\right) \nonumber \\&\quad +\left( 1-\frac{\alpha v_{2}}{2((v_{1}-\beta v_{2})-(v_{1}(1-\alpha )-v_{2}(2-2\alpha -\beta )))}\right) \frac{\beta v_{2}}{2}\nonumber \\&\times \left( 1+\frac{\beta v_{2}}{ v_{1}(1-\alpha )-(v_{1}-v_{2})(1-\alpha -\beta )}\right) \nonumber \\&\quad +\frac{\alpha v_{2}}{2((v_{1}-\beta v_{2})-(v_{1}(1-\alpha )-v_{2}(2-2\alpha -\beta )))}\frac{v_{2}(1-\alpha )}{2}\nonumber \\&\times \left( 1+\frac{ v_{2}(1-\alpha )}{v_{1}(1-\alpha )-v_{2}(1-\alpha -\beta )}\right) \nonumber \\&\quad +\left( 1-\frac{\alpha v_{2}}{2((v_{1}-\beta v_{2})-(v_{1}(1-\alpha )-v_{2}(2-2\alpha -\beta )))}\right) \nonumber \\&\times \frac{\beta v_{2}}{2(\beta v_{1}+v_{2}(1-\alpha -\beta ))}\frac{v_{2}(1-\alpha -\beta )(v_{1}+v_{2})}{ 2v_{1}} \nonumber \\&\quad +\frac{\alpha v_{2}}{2((v_{1}-\beta v_{2})-(v_{1}(1-\alpha )-v_{2}(2-2\alpha -\beta )))}\nonumber \\&\times \left( 1-\frac{v_{2}(1-\alpha )}{2(v_{1}(1-\alpha )-v_{2}(1-\alpha -\beta ))}\right) \frac{v_{2}(1-\alpha -\beta )(v_{1}+v_{2})}{ 2v_{1}} \end{aligned}$$
(13)

Let \(v_{1}=v,v_{2}=1\) and \(\beta =0.\) Then we have

$$\begin{aligned} TE_{\alpha }^{(B1)}= & {} \;\frac{\alpha }{2}+\frac{\alpha ^{2}}{2\alpha v+4-4\alpha }+\frac{\alpha -\alpha ^{2}}{2(2\alpha v+4-4\alpha )}\\&+\left( \frac{ \alpha }{2\alpha v+4-4\alpha }\right) \left( \frac{(1-\alpha )^{2}}{2v-2\alpha v-2+2\alpha }\right) \\&+\left( \frac{v+1-\alpha v-\alpha }{2v}\right) \left( \frac{\alpha }{2(\alpha v+2-2\alpha } \right) \left( 1-\frac{1-\alpha }{2v-2\alpha v-2+2\alpha }\right) \end{aligned}$$

The marginal effect of \(\alpha \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\alpha }^{(B1)}}{d\alpha }=\frac{4\alpha ^{2}v^{3}+16(\alpha -\alpha ^{2})v^{2}+(13\alpha ^{2}-32\alpha +24)v+6\alpha ^{2}-12\alpha +6}{ 8\alpha ^{2}v^{3}+32(\alpha -\alpha ^{2})v^{2}+32(\alpha ^{2}-2\alpha +1)v} \end{aligned}$$
(14)

when \(\alpha \) approaches zero we obtain that

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\frac{dTE_{\alpha }^{(B1)}}{d\alpha }=\frac{24v+6 }{32v} \end{aligned}$$

Thus, if condition 5 holds, allocating a sufficiently small prize of \(\alpha \) in the first stage, increases the players’ expected total effort.

2. If condition 7 holds, the expected total effort given by (12) is

$$\begin{aligned} TE_{\alpha }^{(B2)}= & {} \frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{2}\left( 1+ \frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{v_{1}-\beta v_{2}}\right) \nonumber \\&\quad +\left( 1-\frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{2(v_{1}-\beta v_{2})}\right) \frac{\beta v_{2}}{2}\nonumber \\&\times \left( 1+\frac{\beta v_{2}}{v_{1}(1-\alpha )-(v_{1}-v_{2})(1-\alpha -\beta )}\right) \nonumber \\& \quad +\frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{2(v_{1}-\beta v_{2})} \frac{v_{1}(1-\alpha )-v_{2}(1-\alpha -\beta )}{2}\nonumber \\&\times \left( 1+\frac{v_{1}(1-\alpha )-v_{2}(1-\alpha -\beta }{v_{2}(1-\alpha )}\right) \nonumber \\&\quad +\left( 1-\frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{2(v_{1}-\beta v_{2})}\right) \frac{\beta v_{2}}{2(\beta v_{1}+v_{2}(1-\alpha -\beta ))}\nonumber \\&\times \frac{ v_{2}(1-\alpha -\beta )(v_{1}+v_{2})}{2v_{1}} \nonumber \\&\quad +\frac{v_{2}(2-\alpha -\beta )-v_{1}(1-\alpha )}{2(v_{1}-\beta v_{2})} \frac{v_{1}(1-\alpha )-v_{2}(1-\alpha -\beta )}{2v_{2}(1-\alpha )}\nonumber \\&\times \frac{ v_{2}(1-\alpha -\beta )(v_{1}+v_{2})}{2v_{1}} \end{aligned}$$
(15)

Let \(v_{1}=v,v_{2}=1\) and \(\beta =0.\) Then we have

$$\begin{aligned} TE_{\alpha }^{(B2)}= & {}\; \frac{2-\alpha -v(1-\alpha )}{2}+\frac{(2-\alpha -v(1-\alpha ))^{2}}{2v} \\&+\frac{(2-\alpha -v(1-\alpha ))}{2v}\left( \frac{v(1-\alpha )-1+\alpha }{2}+ \frac{(v(1-\alpha )-1+\alpha )^{2}}{2(1-\alpha )}\right) \\&+\frac{(2-\alpha -v(1-\alpha ))}{2v}\left( \frac{v(1-\alpha )-1+\alpha }{ 2(1-\alpha )}\right) \left( \frac{v-\alpha v+1-\alpha }{2v}\right) \end{aligned}$$

The marginal effect of \(\alpha \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\alpha }^{(B2)}}{d\alpha }=\frac{4(\alpha -1)v^{4}+(12-14\alpha )v^{3}+(18-23)v^{2}+(18-10\alpha )v+2\alpha -3}{8v^{2}} \end{aligned}$$
(16)

When \(\alpha \) approaches zero we obtain that

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\frac{dTE_{\alpha }^{(B2)}}{d\alpha }=-\frac{ -4v^{4}+12v^{3}-23v^{2}+18v-3}{8v^{2}} \end{aligned}$$

It can be verified that the last term is positive for all \(v>1.\) Thus, if condition 7 holds, compared to the best-of-three all-pay auction with a single final prize, allocating a sufficiently small prize of \(\alpha \) in the first stage increases the players’ expected total effort.

1.2 Proof of Proposition 3

1. Let \(v_{1}=v,v_{2}=1,\) and \(\alpha =0\). Then, if condition 5 holds, the expected total effort given by (13) is

$$\begin{aligned} TE_{\beta }^{(B1)}=\frac{\beta }{2}+\frac{\beta ^{2}}{2\beta v+2-2\beta }+ \frac{(1-\beta )(v+1)}{2v}\frac{\beta }{2\beta v+2-2\beta } \end{aligned}$$

The marginal effect of \(\beta \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\beta }^{(B1)}}{d\beta }=\frac{2\beta ^{2}v^{3}+(4\beta -3\beta ^{2})v^{2}+(3-2\beta )v+\beta ^{2}-2\beta +1}{4\beta ^{2}v^{3}+8(\beta -\beta ^{2})v^{2}+4(\beta ^{2}-2\beta +1)v} \end{aligned}$$
(17)

when \(\beta \) approaches zero we obtain that

$$\begin{aligned} \lim _{\beta \rightarrow 0}\frac{dTE_{\beta }^{(B1)}}{d\beta }=\frac{3v+1}{4} \end{aligned}$$

Thus, if condition 5 holds, allocating a sufficiently small prize of \(\beta \) in the second stage increases the players’ expected total effort.

2. Let \(v_{1}=v,v_{2}=1,\) and \(\alpha =0\). Then if condition 7 holds, the expected total effort given by (15) is

$$\begin{aligned} TE_{\beta }^{(B2)}= & {} \;\frac{2-\beta -v}{2}+\frac{(2-\beta -v)^{2}}{2(v-\beta )} \\&+\frac{3v-\beta -2}{2(v-\beta )}\left( \frac{\beta }{2}+\frac{\beta ^{2}}{ 2(\beta v+1-\beta )}\right) \\&+\frac{2-\beta -v}{2(v-\beta )}\left( \frac{v-1+\beta }{2}+\frac{(v-1+\beta )^{2} }{2}\right) \\&+\frac{3v-\beta -2}{2(v-\beta )}\frac{\beta }{2(\beta v+1-\beta )}\frac{ v+1-\beta v-\beta }{2v} \\&+\frac{2-\beta -v}{2(v-\beta )}\frac{v-1+\beta }{2}\frac{v+1-\beta v-\beta }{2v} \end{aligned}$$

The marginal effect of \(\beta \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\beta }^{(B2)}}{d\beta }=\frac{A}{B} \end{aligned}$$
(18)

where

$$\begin{aligned} A= & {}\; -7\beta ^{2}v^{6}-(8\beta ^{3}-41\beta ^{2}+14\beta )v^{5}-(-\beta ^{4}-36\beta ^{3}+116\beta ^{2}-68\beta +7)v^{4} \nonumber \\&-(-2\beta ^{5}+9\beta ^{4}+56\beta ^{3}-18\beta ^{2}+140\beta -30)v^{3}-(6\beta ^{5}-24\beta ^{4}-24\beta ^{3}\nonumber \\&+144\beta ^{2}-136\beta +41)v^{2} \nonumber \\&-(-6\beta ^{5}+25\beta ^{4}-16\beta ^{3}-40\beta ^{2}+54\beta -20)v-(2\beta ^{5}-9\beta ^{4}\nonumber \\&+12\beta ^{3}-3\beta ^{2}-4\beta +2) \end{aligned}$$
(19)

and

$$\begin{aligned} B= & {}\; \beta ^{2}v^{5}+16(-\beta ^{3}-\beta ^{2}+\beta )v^{4}+8(\beta ^{4}+4\beta ^{3}-3\beta ^{2}-2\beta +1)v^{3} \nonumber \\&+16(-\beta ^{4}+2\beta ^{2}-\beta )v^{2}+8(\beta ^{4}-2\beta ^{3}+\beta ^{2})v \end{aligned}$$
(20)

When \(\beta \) approaches zero we obtain that

$$\begin{aligned} \lim _{\beta \rightarrow 0}\frac{dTE_{\beta }^{(B2)}}{d\beta }=\frac{ -7v^{4}+30v^{3}-41v^{2}+20v-2}{8v^{3}} \end{aligned}$$

It can be verified that the last term is positive for all \(1<v\le 2.\) Since condition 7 holds if \(1\le v<2-\beta \), we obtain that compared to the best-of-three all-pay auction with a single final prize, allocating a sufficiently small prize of \(\beta \) in the second stage increases the players’ expected total effort.

1.3 Proof of Proposition 4

1. Let \(v_{1}=v,v_{2}=1,\) and \(\alpha =\beta \). Then, if condition 5 holds, the expected total effort given by (13) is

$$\begin{aligned} TE_{\alpha \beta }^{(B1)}= & {}\; \frac{\alpha }{2}+\frac{\alpha ^{2}}{2(\alpha v+2-4\alpha )}+ (1-\frac{\alpha }{2(\alpha v+2-4\alpha )}(\frac{\alpha }{2}+ \frac{\alpha ^{2}}{2(\alpha v+1-2\alpha )}\\&+\frac{\alpha }{2(\alpha v+2-4\alpha )}\left( \frac{1-\alpha }{2}+\frac{ (1-\alpha )^{2}}{2(v-\alpha v-1+2\alpha )}\right) \\&+\frac{v+1-2\alpha v-2\alpha }{2v}\left( 1-\frac{\alpha }{2(\alpha v+2-4\alpha )} \right) \frac{\alpha }{2(\alpha v+1-2\alpha )} \\&+\frac{v+1-2\alpha v-2\alpha }{2v}\frac{\alpha }{2(\alpha v+2-4\alpha )}\left( 1- \frac{1-\alpha }{2(v-\alpha v-1+2\alpha )}\right) \end{aligned}$$

The marginal effect of \(\alpha \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\alpha \beta }^{(B1)}}{d\alpha }=\frac{C}{D} \end{aligned}$$
(21)

where

$$\begin{aligned} C= & {}\; (8\alpha ^{6}-16\alpha ^{5}+8\alpha ^{4})v^{7}+(-132\alpha ^{6}+29\alpha ^{5}-212\alpha ^{4}+48\alpha ^{3})v^{6} \nonumber \\&+(872\alpha ^{6}-2144\alpha ^{5}+1930\alpha ^{4}-764\alpha ^{3}+114\alpha ^{2})v^{5} \nonumber \\&+(-2932\alpha ^{6}+7752\alpha ^{5}-8128\alpha ^{4}+4258\alpha ^{3}-1123\alpha ^{2}+120\alpha )v^{4} \nonumber \\&+(5192\alpha ^{6}-14560\alpha +16974\alpha ^{4}-10506\alpha ^{3}+3625\alpha ^{2}-656\alpha +48)v^{3} \nonumber \\&+(-4240\alpha ^{6}+12544\alpha ^{5}-15820\alpha ^{4}+10868\alpha ^{3}-4278\alpha ^{2}+912\alpha -82)v^{2} \nonumber \\&+(480\alpha ^{6}-1664\alpha ^{5}+2480\alpha ^{4}-1984\alpha ^{3}+886\alpha ^{2}-208\alpha +20)v \nonumber \\&+896\alpha ^{6}-2688\alpha ^{5}+3360\alpha ^{4}-2240\alpha ^{3}+840\alpha ^{2}-168\alpha +14 \end{aligned}$$
(22)

and

$$\begin{aligned} D= & {}\; (8\alpha ^{6}-16\alpha ^{5}+8\alpha ^{4})v^{7}+(-128\alpha ^{6}+288\alpha ^{5}-208\alpha ^{4}+48\alpha ^{3})v^{6} \nonumber \\&+(832\alpha ^{6}-2048\alpha ^{5}+1840\alpha ^{4}-720\alpha ^{3}+104\alpha ^{2})v^{5} \nonumber \\&+(-2816\alpha ^{6}+7424\alpha ^{5}-7680\alpha ^{4}+3904\alpha ^{3}-976\alpha ^{2}+96\alpha )v^{4} \nonumber \\&+(5248\alpha ^{6}-14592\alpha ^{5}+16576\alpha ^{4}-9792\alpha ^{3}+3144\alpha ^{2}-512\alpha +32)v^{3} \nonumber \\&+(-5120\alpha ^{6}+14848\alpha ^{5}-17920\alpha ^{4}+11520\alpha ^{3}-4160\alpha ^{2}+800\alpha -64)v^{2} \nonumber \\&+(2048\alpha ^{6}-6144\alpha ^{5}+7680\alpha ^{4}-5120\alpha ^{3}+1920\alpha ^{2}-384\alpha +32)v \end{aligned}$$
(23)

When \(\alpha \) approaches zero we obtain that

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\frac{dTE_{\alpha \beta }^{(B1)}}{d\alpha }=\frac{ 48v^{3}-82v^{2}+20v+14}{32v^{3}-64v^{2}+32v} \end{aligned}$$

It can be verified that the last term is positive for all \(v\ge 1\). Thus, if condition 5 holds, compared to the best-of-three all-pay auction with a single final prize, allocating a sufficiently small prize of \(\alpha \) in both first stages increases the players’ expected total effort.

2. If condition 7 holds, \(v_{1}=v,v_{2}=1,\) and \(\alpha =0,\) then the expected total effort given by (15) is

$$\begin{aligned} TE_{\alpha \beta }^{(B2)}= & {} \;\frac{2-\beta -v}{2}+\frac{(2-\beta -v)^{2}}{ 2(v-\beta )} \\&+\frac{3v-\beta -2}{2(v-\beta )}\left( \frac{\beta }{2}+\frac{\beta ^{2}}{ 2(\beta v+1-\beta )}\right) \\&+\frac{2-\beta -v}{2(v-\beta )}\left( \frac{v-1+\beta }{2}+\frac{(v-1+\beta )^{2} }{2}\right) \\&+\frac{3v-\beta -2}{2(v-\beta )}\frac{\beta }{2(\beta v+1-\beta )}\frac{ v+1-\beta v-\beta }{2v} \\&+\frac{2-\beta -v}{2(v-\beta )}\frac{v-1+\beta }{2}\frac{v+1-\beta v-\beta }{2v} \end{aligned}$$

The marginal effect of \(\beta \) on the expected total effort is

$$\begin{aligned} \frac{dTE_{\alpha \beta }^{(B2)}}{d\beta }=\frac{E}{F} \end{aligned}$$
(24)

where

$$\begin{aligned} E= & {}\; (-4\alpha ^{3}+4\alpha ^{2})v^{7}+(2\alpha ^{4}+40\alpha ^{3}-43\alpha ^{2}+8\alpha )v^{6} \nonumber \\&+(-20\alpha ^{4}-17\alpha ^{3}+206\alpha ^{2}-58\alpha +4)v^{5}+(88\alpha ^{4}+384\alpha ^{3}\nonumber \\&-559\alpha ^{2}+200\alpha -19)v^{4} \nonumber \\&+(-208\alpha ^{4}-312\alpha ^{3}+835\alpha ^{2}-386\alpha +53)v^{3}+(262\alpha ^{4}+120\alpha ^{3}\nonumber \\&-578\alpha ^{2}+340\alpha -59)v^{2} \nonumber \\&+(-156\alpha ^{4}+76\alpha ^{3}+135\alpha ^{2}-112\alpha +23)v+(32\alpha ^{4}-32\alpha ^{3}+8\alpha -2) \end{aligned}$$
(25)

and

$$\begin{aligned} F= & {}\; 8\alpha ^{2}v^{5}+(-16\alpha ^{3}-32\alpha ^{2}+16\alpha )v^{4}+(8\alpha ^{4}+64\alpha ^{3}-32\alpha +8)v^{3} \nonumber \\&+(-32\alpha ^{4}-48\alpha ^{3}+64\alpha ^{2}-16\alpha )v^{2}+(32\alpha ^{4}-32\alpha ^{3}+8\alpha ^{2})v \end{aligned}$$
(26)

When \(\beta \) approaches zero we obtain that

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\frac{dTE_{\alpha \beta }^{(B2)}}{d\alpha }=\frac{ 4v^{5}-19v^{4}+53v^{3}-59v^{2}+23v-2}{8v^{3}} \end{aligned}$$

It can be verified that the last term is positive for all \(v>1.\) Since condition 7 holds if \(1\le v<2-\beta \), we obtain that compared to the best0of-three all-pay auction with a single final prize, allocating a sufficiently small prize of \(\beta \) in the second stage increases the players’ expected total effort.

1.4 Proof of Proposition 5

When players are sufficiently asymmetric, namely, \(v_{1}=v>>v_{2}=1\), condition 5 holds. In that case, if we allocate a prize of \(\alpha \) in the first stage, by (14), we obtain that the marginal effect of the prize on the expected total effort when v approaches infinity is

$$\begin{aligned} \lim _{v\rightarrow \infty }\frac{dTE_{\alpha }^{(B1)}}{d\alpha }=\frac{ 4\alpha ^{2}}{8\alpha ^{2}}=\frac{1}{2} \end{aligned}$$

If we allocate a prize of \(\beta \) in the second stage, by (17), we obtain that the marginal effect of the prize on the expected total effort when v approaches infinity is

$$\begin{aligned} \lim _{v\rightarrow \infty }\frac{dTE_{\beta }^{(B1)}}{d\beta }=\frac{2\beta ^{2}}{4\beta ^{2}}=\frac{1}{2} \end{aligned}$$

and if we allocate a prize of \(\alpha \) in both the first stages, by (21), (22) and (23), we obtain that the marginal effect of the prizes on the expected total effort when v approaches infinity is

$$\begin{aligned} \lim _{v\rightarrow \infty }\frac{dTE_{\alpha \beta }^{(B1)}}{d\alpha }=\frac{ 8\alpha ^{6}-16\alpha ^{5}+8\alpha ^{4}}{8\alpha ^{6}-16\alpha ^{5}+8\alpha ^{4}}=1 \end{aligned}$$

Thus, we obtain that

$$\begin{aligned} \lim _{v\rightarrow \infty }\frac{dTE_{\alpha \beta }^{(B1)}}{d\alpha } >\lim _{v\rightarrow \infty }\frac{dTE_{\alpha }^{(B1)}}{d\alpha } =\lim _{v\rightarrow \infty }\frac{dTE_{\beta }^{(B1)}}{d\beta } \end{aligned}$$

In other words, in order to maximize the players’ expected total effort. it is better to award intermediate prizes in both first stages than in only one of them .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sela, A., Tsahi, O. On the optimal allocation of prizes in best-of-three all-pay auctions. Soc Choice Welf 55, 255–273 (2020). https://doi.org/10.1007/s00355-020-01239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-020-01239-1

Navigation