Skip to main content
Log in

Instabilities in micro-contraction flows of semi-dilute CTAB and CPyCl solutions: rheology and flow instabilities

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The flows of two semi-dilute surfactant solutions (CTAB and CPyCl) through several micro contractions/expansions are experimentally investigated, following an extensive rheological characterization in both shear and extensional flows. The shear rheology of the solutions shows strong shear thinning and shear banding, whereas Small Amplitude Oscillatory Shear and Capillary Break-up Extensional Rheometry indicate that they have high shear and extensional elasticities. Flow visualizations and micro-particle image velocimetry measurements show that the surfactant solutions exhibit three established types of flow patterns in contraction flows: Newtonian-like, asymmetric and disordered. Newtonian-like flow occurs at low flow rates and is preceded by a long transient flow in experiments starting from rest, which seems to be related to shear banding and the alignment of wormlike micelles. The asymmetric flow regime occurs at moderate flow rates and is characterized by an asymmetric upstream central jet with two adjacent vortices, features that change non-periodically, but slowly, in time. This flow pattern seems to be related with the high elasticity of the semi-dilute solutions. The disordered flow pattern is similar to the asymmetric flow in terms of broad characteristics, but the flow asymmetry changes with time much faster than in the asymmetric flow regime, resembling a chaotic-like flow. The disordered flow seems to be related with the breakdown of micellar structures. We concluded also that the flows in both the asymmetric and disordered flow regimes are globally stable in terms of flow patterns, but locally unstable in terms of flow characteristics, with power spectra of the velocity fluctuations having slopes that differ from those typically encountered in elastic turbulence.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

Download references

Acknowledgements

All authors acknowledge funding by Centro de Estudos de Fenómenos de Transporte (CEFT) and Fundação para a Ciência e a Tecnologia (FCT) via projects UID/EMS/00532/2013 and UID/EMS/00532/2019. R. Matos is also indebted to FCT for the PhD scholarship SFRH/BD/86029/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. T. Pinho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, R.M., Alves, M.A. & Pinho, F.T. Instabilities in micro-contraction flows of semi-dilute CTAB and CPyCl solutions: rheology and flow instabilities. Exp Fluids 60, 145 (2019). https://doi.org/10.1007/s00348-019-2785-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-019-2785-3

Navigation