Skip to main content
Log in

A digital holography set-up for 3D vortex flow dynamics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allano D, Malek M, Walle F, Corbin F, Godard G, Coëtmellec S, Lecordier B, Foucaut JM, Lebrun D (2013) Three-dimensional velocity near-wall measurements by digital in-line holography: calibration and results. Appl Opt 52(1):A9–A17

    Article  Google Scholar 

  • Brossard J, Chagdali M (2001) Experimental investigation of the harmonic generation by waves over a submerged plate. Coast Eng 42(4):277–290

    Article  Google Scholar 

  • Brossard J, Perret G, Blonce L, Diedhiou A (2009) Higher harmonics induced by a submerged horizontal plate and a submerged rectangular step in a wave flume. Coast Eng 56(1):11–22

    Article  Google Scholar 

  • Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Özkul C (2000) Application of wavelet transform to hologram analysis: three-dimensional location of particles. Opt Lasers Eng 33(6):409–421

    Article  Google Scholar 

  • Chang KA, Hsu TJ, Liu PLF (2005) Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part II : Cnoidal waves. Coast Eng 52:257–283

    Article  Google Scholar 

  • Coupland JM (2004) Holographic particle image velocimetry: signal recovery from under-sampled ccd data. Meas Sci Technol 15(4):711

    Article  Google Scholar 

  • Goda Y, Suzuki T (2011) Estimation of incident and reflected waves in random wave experiments. Coast Eng Proc 1(15)

  • Katz J, Sheng J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42:531–555

    Article  Google Scholar 

  • Neelamani S, Gayathri T (2006) Wave interaction with twin plate wave barrier. Ocean Eng 33:495–516

    Article  Google Scholar 

  • Malek M, Allano D, Coëtmellec S, Özkul C, Lebrun D (2004a) Digital in-line holography for three-dimensional–two-components particle tracking velocimetry. Meas Sci Technol 15(4):699

    Article  Google Scholar 

  • Malek M, Allano D, Coëtmellec S, Lebrun D (2004b) Digital in-line holography: influence of the shadow density on particle field extraction. Opt Express 12(10):2270–2279

    Article  Google Scholar 

  • Mei R (1996) Velocity fidelity of flow tracer particles. Exp Fluids 22(1):1–13

    Article  Google Scholar 

  • Meliga P, Gallaire F, Chomaz J-M (2012) A weakly nonlinear mechanism for mode selection in swirling jets. J Fluid Mech 699:216–262

    Article  MathSciNet  MATH  Google Scholar 

  • Meng H, Gang YP, Woodward SH (2004) Holographic particle image velocimetry: from film to digital recording. Meas Sci Technol 15(4):673

    Article  Google Scholar 

  • Pan G, Meng H (2003) Digital holography of particle fields: reconstruction by use of complex amplitude. Appl Opt 42(5):827–833

    Article  Google Scholar 

  • Patarapanich M (1984) Maximum and zero reflection from submerged plate. J Waterw Port Coast Eng-ASCE 110(2):171–181

    Article  Google Scholar 

  • Poupardin A, Perret G, Pinon G, Bourneton N, Rivoalen E, Brossard J (2012) Vortex kinematic around a submerged plate under water waves. Part I: experimental analysis. Eur J Mech B/Fluids 34:47–55

    Article  MATH  Google Scholar 

  • Pu SL, Allano D, Patte-Rouland B, Malek M, Lebrun D, Cen KF (2005) Particle field characterization by digital in-line holography: 3d location and sizing. Exp Fluids 39(1):1–9

    Article  Google Scholar 

  • Royer H (1974) An application of high-speed microholography: the mertology of fogs. Nouvelle Revue d’Optique 5(2):87

    Article  Google Scholar 

  • Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378

    Article  MathSciNet  MATH  Google Scholar 

  • Salah N, Godard G, Lebrun D, Paranthoen P, Allano D, Coëtmellec S (2008) Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow. Meas Sci Technol 19:074001

    Article  Google Scholar 

  • Scarano F (2012) Tomographic piv: principles and practice. Meas Sci Technol 24(1):012001

    Article  Google Scholar 

  • Schröder A, Geisler R, Staack K, Elsinga GE, Scarano F, Wieneke B, Henning A, Poelma C, Westerweel J (2011) Eulerian and lagrangian views of a turbulent boundary layer flow using time-resolved tomographic piv. Exp Fluids 50(4):1071–1091

    Article  Google Scholar 

  • Seifi M, Fournier C, Grosjean N, Méès L, Marié J-L, Denis L (2013) Accurate 3d tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach. Opt Express 21(23):27964–27980

    Article  Google Scholar 

  • Sheng J, Malkiel E, Katz J (2008) Using digital holographic microscopy for simultaneous measurements of 3d near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids 45(6):1023–1035

    Article  Google Scholar 

  • Siew PF, Hurley DG (1977) Long surface waves incident on a submerged horizontal plate. J Fluid Mech 83(1):141–151

    Article  MATH  Google Scholar 

  • Talapatra S, Katz J (2012) Three-dimensional velocity measurements in a roughness sublayer using microscopic digital in-line holography and optical index matching. Meas Sci Technol 24(2):024004

    Article  Google Scholar 

  • Ting FCK, King YK (1994) Vortex generation in water waves propagating over a submerged obstacle. Coastal Eng 24:23–49

    Article  Google Scholar 

  • Toloui M, Hong J (2015) High fidelity digital inline holographic method for 3d flow measurements. Opt Express 23(21):27159–27173

    Article  Google Scholar 

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404

    Article  MathSciNet  MATH  Google Scholar 

  • Usha R, Gayathri T (2005) Wave motion over a twin-plate breakwater. Ocean Eng 32:1054–1072

    Article  Google Scholar 

  • Vikram CS, Billet ML (1988) Some salient features of in-line Fraunhofer holography with divergent beams. Optik (Stuttgart) 78(2):80–83

    Google Scholar 

  • Volk R, Calzavarini E, Verhille G, Lohse D, Mordant N, Pinton J-F, Toschi F (2008) Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Phys D 237(14):2084–2089

    Article  MATH  Google Scholar 

  • Wu YW, Xuecheng YJ, Zhihua W, Xiang G, Binwu Z, Linghong C, Kunzan Q, Gréhan G, Kefa C (2014) Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography. Appl Opt 53(4):556–564

    Article  Google Scholar 

  • Yingchun W, Xuecheng W, Yao L, Wang Z, Chen L, Gréhan G, Cen K (2015) Direct particle depth displacement measurement in DHPTV using spatial correlation of focus metric curves. Opt Commun 345:71–79

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Development of 3D optical techniques for complex flows” project of the LABEX EMC3 (Energy Materials and Clean Combustion Center) and the Rgion Haute Normandie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaële Perret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebon, B., Perret, G., Coëtmellec, S. et al. A digital holography set-up for 3D vortex flow dynamics. Exp Fluids 57, 103 (2016). https://doi.org/10.1007/s00348-016-2187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2187-8

Keywords

Navigation