Skip to main content
Log in

IR thermography for dynamic detection of laminar-turbulent transition

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This work investigates the potential of infrared (IR) thermography for the dynamic detection of laminar-turbulent transition. The experiments are conducted on a flat plate at velocities of 8–14 m/s, and the transition of the laminar boundary layer to turbulence is forced by a disturbance source which is turned on and off with frequencies up to 10 Hz. Three different heating techniques are used to apply the required difference between fluid and structure temperature: a heated aluminum structure is used as an internal structure heating technique, a conductive paint acts as a surface bounded heater, while an IR heater serves as an example for an external heating technique. For comparison of all heating techniques, a normalization is introduced and the frequency response of the measured IR camera signal is analyzed. Finally, the different heating techniques are compared and consequences for the design of experiments on laminar-turbulent transition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Astarita T, Carlomagno GM (2012) Infrared thermography for thermo-fluid-dynamics. Springer, Berlin

    Google Scholar 

  • ASTM International: ASTM E1213-14 (2014) Standard practice for minimum resolvable temperature difference for thermal imaging systems

  • ASTM International: ASTM E1543-14 (2014) Standard practice for noise equivalent temperature difference of thermal imaging systems

  • Banks DW, Van Dam C, Shiu H, Miller G (2000) Visualization of in-flight flow phenomena using infrared thermography. National Aeronautics and Space Administration, Dryden Flight Research Center

  • Breitenstein O, Warta W, Langenkamp M (2010) Lock-in thermography: basics and use for evaluating electronic devices and materials, vol 10. Springer, Berlin

    Google Scholar 

  • Cardone G, Astarita T, Carlomagno G (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3(1):1–9

    Article  Google Scholar 

  • Carlomagno GM, Cardone G (2010) Infrared thermography for convective heat transfer measurements. Exp Fluids 49(6):1187–1218

    Article  Google Scholar 

  • Crawford BK, Duncan Jr GT, West DE, Saric WS (2014) Quantitative boundary-layer transition measurements using ir thermography. AIAA SciTech pp. 13–17

  • Crawford BK, Duncan GT Jr, West DE, Saric WS (2015) Robust, automated processing of ir thermography for quantitative boundary-layer transition measurements. Exp Fluids 56(7):1–11

    Article  Google Scholar 

  • Crawford BK et al (2013) Laminar-turbulent boundary layer transition imaging using ir thermography. Opt Photonics J 3(03):233

    Article  Google Scholar 

  • De Luca L, Carlomagno G, Buresti G (1990) Boundary layer diagnostics by means of an infrared scanning radiometer. Exp Fluids 9(3):121–128

    Article  Google Scholar 

  • Dhungel A, Lu Y, Phillips W, Ekkad SV, Heidmann J (2009) Film cooling from a row of holes supplemented with antivortex holes. J Turbomach 131(2):021,007

    Article  Google Scholar 

  • FLIR: The Ultimate infrared handbook for R&D Professionals

  • Gartenberg E, OBERTS A (1991) Airfoil transition and separation studies using an infrared imaging system. J Aircr 28(4):225–230

    Article  Google Scholar 

  • Gartenberg E, OBERTS A (1992) Twenty-five years of aerodynamic research with infrared imaging. J Aircr 29(2):161–171

    Article  Google Scholar 

  • Gartenberg E, Wright RE (1994) Boundary-layer transition detection with infrared imaging emphasizing cryogenic applications. AIAA J 32(9):1875–1882

    Article  Google Scholar 

  • Grawunder M, Reß R, Breitsamter C (2016) Thermographic transition detection for low-speed wind-tunnel experiments. AIAA J, pp 1–5

  • Gurka R, Liberzon A, Hetsroni G (2004) Detecting coherent patterns in a flume by using piv and ir imaging techniques. Exp Fluids 37(2):230–236

    Article  Google Scholar 

  • Horstmann K, Quast A, Redeker G (1990) Flight and wind-tunnel investigations on boundary-layer transition. J Aircr 27(2):146–150

    Article  Google Scholar 

  • Jackson CN, Sherlock CN, Moore PO (2007) Nondestructive testing handbook: infrared and thermal testing. American Society for Nondestructive Testing

  • Lang W, Gardner A, Mariappan S, Klein C, Raffel M (2015) Boundary-layer transition on a rotor blade measured by temperature-sensitive paint, thermal imaging and image derotation. Exp Fluids 56(6):1–14

    Article  Google Scholar 

  • Le Sant Y, Marchand M, Millan P, Fontaine J (2002) An overview of infrared thermography techniques used in large wind tunnels. Aerosp Sci Technol 6(5):355–366

    Article  Google Scholar 

  • Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15(9):R27

    Article  Google Scholar 

  • Quast AW (1987) Detection of transition by infrared image technique. In: ICIASF’87-12th international congress on instrumentation in aerospace simulation facilities, vol. 1, pp 125–134

  • Raffel M, Merz CB (2014) Differential infrared thermography for unsteady boundary-layer transition measurements. AIAA J 52(9):2090–2093

    Article  Google Scholar 

  • Reeh AD, Tropea C (2015) Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. J Fluid Mech 767:394–429

    Article  MathSciNet  Google Scholar 

  • Richter K, Schülein E (2014) Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Exp Fluids 55(7):1–13

    Article  Google Scholar 

  • Riedel H, Horstmann KH, Ronzheimer A, Sitzmann M (1998) Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing. Aerosp Sci Technol 2(1):1–12

    Article  Google Scholar 

  • Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to Freestream disturbances. Ann Rev Fluid Mech 34(1):291–319

    Article  MathSciNet  MATH  Google Scholar 

  • Saric WS, Reed HL, White EB (2003) Stability and transition of three-dimensional boundary layers. Annu Rev Fluid Mech 35(1):413–440

    Article  MathSciNet  MATH  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-Layer theory. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Seitz A, Horstmann KH (2006) In-flight investigations of Tollmien-Schlichting waves. In: IUTAM symposium on one hundred years of Boundary Layer Research. Springer, pp 115–124

  • Simon B, Nemitz T, Rohlfing J, Fischer F, Mayer D, Grundmann S (2015) Active flow control of laminar boundary layers for variable flow conditions. Int J Heat Fluid Flow 56:344–354

    Article  Google Scholar 

  • Simon B, Schnabel P, Grundmann S (2016) Ir measurements for quantification of laminar boundary layer stabilization with dbd plasma actuators. In: New results in numerical and experimental fluid mechanics X. Springer

  • Stock HW (2002) Wind tunnel-flight correlation for laminar wings in adiabatic and heating flow conditions. Aerosp Sci Technol 6(4):245–257

    Article  MathSciNet  Google Scholar 

  • VDI eV (ed) (2010) VDI heat Atlas. Springer, Berlin, Heidelberg

  • Vollmer M, Möllmann KP (2010) Infrared thermal imaging: fundamentals, research and applications. Wiley, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation DFG (project GR 3524/4-1). We also wish to thank Klaus de Groot from DLR Braunschweig for the fruitful discussions. Finally the authors thank the “Institut für Luft- und Raumfahrt” (Technische Universität Berlin) for the free loan of the cooled FLIR SC 3000 infrared camera and the IDD (Technische Universität Darmstadt) for screen printing of the samples with conductive paint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, B., Filius, A., Tropea, C. et al. IR thermography for dynamic detection of laminar-turbulent transition. Exp Fluids 57, 93 (2016). https://doi.org/10.1007/s00348-016-2178-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2178-9

Keywords

Navigation