Skip to main content
Log in

Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

High-speed infrared thermography was applied for boundary-layer transition measurements on the upper side of helicopter rotors. The transition detection is based on the analysis of a single instantaneous thermal image of the rotating blade and allows the determination of both the locations of the onset and of the end of the transition region. Measurements were performed on a Mach-scaled BO105 model rotor for different rotation frequencies. The transition characteristics are presented and compared to two-dimensional numerical simulations, and the measurement scatter is discussed. Additional transition measurements were performed on the main rotors of the DLR research helicopters Eurocopter BO105 and EC135. The transition behavior of the EC135 rotor blade is presented for different cases, and the effect of the contamination of the rotor blade leading edge on the laminar flow is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Angle of attack (°)

\(\rho _\infty \) :

Free stream density (kg/m\(^3\))

\(c\) :

Chord (m)

\(c_{\text {f}}\) :

Skin friction coefficient

c p :

Specific heat capacity (J/kg K)

c p :

Pressure coefficient

\(d\) :

Diameter (m)

\(f\) :

Rotation frequency (Hz)

\(h\) :

Heat transfer coefficient

\(I\) :

Intensity

\(I_{\text {max}}\) :

Maximum intensity

\(M\) :

Mach number

\(R\) :

Rotor radius (m)

\(r\) :

Radial coordinate (m)

\(R_{{\text {cam}}}\) :

Radial position of the camera (m)

\(Re\) :

Reynolds number

\(St\) :

Stanton number

\(t\) :

Thickness (m)

\(t_{\text {max}}\) :

Maximum airfoil thickness (m)

\(v_\infty \) :

Freestream velocity (m/s)

\(v_{\text {max}}\) :

Maximum velocity (m/s)

\(v_{{\text {min}}}\) :

Minimum velocity (m/s)

\(v_{{\text {tip}}}\) :

Rotor blade tip speed (m/s)

\(x\) :

Chordwise coordinate (m)

\(z\) :

Vertical coordinate (m)

References

  • Drela M (1985) Two-dimensional aerodynamic design and analysis using the Euler equations. PhD thesis, Massachusetts Institute of Technology, Boston

  • Gartenberg E, Johnson WG, Wright RE, Carraway DL, Johnson CB (1992) Boundary-layer transition-detection in a cryogenic wind tunnel using infrared imaging. AIAA J 30(2):444–446. doi:10.2514/3.10936

    Article  Google Scholar 

  • Gauffre G (1988) Detection de la transition laminaire turbulent par thermographie infrarouge. La Recherche Aerospatiale, No. 2. pp 11–22, March–April 1988

  • Green MJ, Budnik MP, Yang L, Chiasson MP (1983) Supporting flight-data analysis for space-shuttle orbiter experiments at NASA Ames Research Center. NASA TM-84345

  • Heineck JT, Schülein E, Raffel M (2014) Boundary layer transition detection on a rotor blade using rotating mirror thermography. In: 5th decennial AHS aeromechanics specialists’ conference, San Francisco, CA, January 22–24, 2014

  • Horstmann KH, Quast A, Redeker G (1990) Flight and wind-tunnel investigations on boundary-layer transition. J Aircr 27(2):146–150. doi:10.2514/3.45910

    Article  Google Scholar 

  • McCroskey WJ (1971) Measurements of boundary layer transition, separation and streamline direction on rotating blades. NASA TN D-6321

  • Mori M, Novak L, Sekavčnik M, Kuštrin I (2008) Application of IR thermography as measuring method to study heat transfer on rotating surface. Forsch Ing 72:1–10. doi:10.1007/s10010-007-0062-8

    Article  Google Scholar 

  • Peake DJ, Bowker AJ, Lockyear SJ, Ellis F (1977) Non-obtrusive detection of transition region using an infra-red camera. AGARD CP-224

  • Quast A (1987) Detection of transition by infrared image technique. In: 12th international congress on instrumentation in aerospace simulation facilities (ICIASF 87), Williamsburg, VA, 22–25 June 1987

  • Raffel M, de Gregorio F, de Groot K, Schneider O, Gibertini G, Seraudie A (2011) On the generation of a helicopter aerodynamic database. Aeron J 115(1164):103–112

    Google Scholar 

  • Riedel H, Sitzmann M (2002) Aspects of flow transition detection when flight testing engine nacelles. J Aircr 39(6):1019–1027. doi:10.2514/2.3030

    Article  Google Scholar 

  • Rohardt CH (1986) Strömungssichtbarmachung an Hubschrauberrotorblättern mittels Acenaphthen. German Aerospace Center (DLR) Report IB 129-86/18

  • Schlichting H, Gersten K (2000) Boundary-layer theory. In: 8th revised and enlarged edition, Springer, Berlin, ISBN 3-540-66270-7

  • Schülein E (2008) Experimental investigation of laminar flow control on a supersonic swept wing by suction. Paper AIAA-2008-4208, 4th Flow control conference, Seattle, Washington, 23–26 June 2008

  • Schülein E, Rosemann H, Schaber S (2012) Transition detection and skin friction measurements on rotating propeller blades. Paper AIAA-2012-3202, 28th AIAA aerodynamic measurement technology, ground testing and flight testing conference, New Orleans, Louisiana, 25–28 June 2012. doi:10.2514/6.2012-3202

  • Séraudie A, Perrauda J, Moens F (2003) Transition measurement and analysis on a swept wing in high lift configuration. Aerosp Sci Technol 7:569–576. doi:10.1016/j.ast.2003.04.001

    Article  Google Scholar 

  • Tanner WH, Yaggy PF (1966) Experimental boundary layer study on hovering rotors. J Am Helicopter Soc 11(3):22–37

    Article  Google Scholar 

  • van der Wall BG, Burley CL, Yu Y, Richard H, Pengel K, Beaumier P (2004) The HART II test—measurement of helicopter rotor wakes. Aerosp Sci Technol 8(4):273–284. doi:10.1016/j.ast.2004.01.001

    Article  Google Scholar 

  • Velkoff HR, Blaser DA, Jones KM (1971) Boundary-layer discontinuity on a helicopter rotor blade in hovering. J Aircr 8(2):101–107. doi:10.2514/3.4423610.2514/3.45910

    Article  Google Scholar 

  • Wadcock AJ, Yamauchi GK, Driver DM (1999) Skin friction measurements on a hovering full-scale tilt rotor. J Am Helicopter Soc 44(4):312–319

    Article  Google Scholar 

  • Yorita D, Asai K, Klein C, Henne U, Schaber S (2012) Transition detection on rotating propeller blades by means of temperature-sensitive paint. Paper AIAA-2012-1187, 50th AIAA aerospace sciences meeting, Nashville, Tennessee, 9–12 January 2012. doi:10.2514/6.2012-1187

  • Zuccher S, Saric WS (2008) Infrared thermography investigations in transitional supersonic boundary layers. Exp Fluids 44:145–157. doi:10.1007/s00348-007-0384-1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Kalow and J. Riemenschneider of the Institute of Composite Structures and Adaptive Systems of the DLR in Braunschweig for their support in performing the whirl tower test. For the conduction of the tests with the DLR helicopters, the authors would like to thank T. Wilmes and U. Göhmann of the DLR Facility for Flight Experiments in Braunschweig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, K., Schülein, E. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography. Exp Fluids 55, 1755 (2014). https://doi.org/10.1007/s00348-014-1755-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1755-z

Keywords

Navigation