Skip to main content
Log in

What is the definition of stone dust and how does it compare with clinically insignificant residual fragments? A comprehensive review

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

During endoscopic stone surgery, Holmium:YAG (Ho:YAG) and Thulium Fiber Laser (TFL) technologies allow to pulverize urinary stones into fine particles, ie DUST. Yet, currently there is no consensus on the exact definition of DUST. This review aimed to define stone DUST and Clinically Insignificant Residual Fragments (CIRF).

Methods

Embase, MEDLINE (PubMed) and Cochrane databases were searched for both in vitro and in vivo articles relating to DUST and CIRF definitions, in November 2023, using keyword combinations: “dust”, “stones”, “urinary calculi”, “urolithiasis”, “residual fragments”, “dusting”, “fragments”, “lasers” and “clinical insignificant residual fragments”.

Results

DUST relates to the fine pulverization of urinary stones, defined in vitro as particles spontaneously floating with a sedimentation duration ≥ 2 sec and suited for aspiration through a 3.6Fr-working channel (WC) of a flexible ureteroscope (FURS). Generally, an upper size limit of 250 µm seems to agree with the definition of DUST. Ho:YAG with and without “Moses Technology”, TFL and the recent pulsed-Thulium:YAG (pTm:YAG) can produce DUST, but no perioperative technology can currently measure DUST size. The TFL and pTm:YAG achieve better dusting compared to Ho:YAG. CIRF relates to residual fragments (RF) that are not associated with imminent stone-related events: loin pain, acute renal colic, medical or interventional retreatment. CIRF size definition has decreased from older studies based on Shock Wave Lithotripsy (SWL) (≤ 4 mm) to more recent studies based on FURS (≤ 2 mm) and Percutaneous Nephrolithotomy(PCNL) (≤ 4 mm). RF \(\le\) 2 mm are associated with lower stone recurrence, regrowth and clinical events rates. While CIRF should be evaluated postoperatively using Non-Contrast Computed Tomography(NCCT), there is no consensus on the best diagnostic modality to assess the presence and quantity of DUST.

Conclusion

DUST and CIRF refer to independent entities. DUST is defined in vitro by a stone particle size criteria of 250 µm, translating clinically as particles able to be fully aspirated through a 3.6Fr-WC without blockage. CIRF relates to ≤ 2 RF on postoperative NCCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data is available on reasonable request to the corresponding author.

Abbreviations

SWL:

Extracorporeal shock wave therapy

URS:

Ureteroscopy

PCNL:

Percutaneous nephrolithotomy

FURS:

Flexible URS

Ho YAG:

Holmium:Yttrium–Aluminium-Garnet

TFL:

Thulium fiber laser

RF:

Residual fragments

CIRF:

Clinically insignificant residual fragments

CSRF:

Clinically significant residual fragments

RIRS:

Retrograde intrarenal surgeries

PRISMA:

Preferred reporting items for systematic review and meta-analysis

HS:

Human urinary stones

Cr,Nd, YSSG:

Chromium, Neodynium:yttrium-scandium-gallium-garnet

Cr,Er, YSSG:

Chromium, erbium:YSSG

Cr,Tm,Ho, YSSG:

Chromium,Thulium,Holmium:YSSG

WC:

Working channel

COD:

Calcium oxalate dihydrate

COM:

Calcium oxalate monohydrate

ISO:

International Standardization Organization

WHO:

World Health Organization

DISS:

Direct in-scope suction systems

UAS:

Ureteral access sheath

KUB:

Kidney Ureter Bladder

US:

Ultrasound

ECIRS:

Endosopic Combined Intrarenal Surgery

References

  1. Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M et al (2016) EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol mars 69(3):475–482

    Article  Google Scholar 

  3. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP et al (2016) Surgical Management of Stones: American Urological Association/Endourological Society Guideline PART I. J Urol 196(4):1153–1160

    Article  PubMed  Google Scholar 

  4. Panthier F, Doizi S, Corrales M, Traxer O (2021) Pulsed lasers and endocorporeal laser lithotripsy. Prog Urol 31:451–457. https://doi.org/10.1016/j.purol.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  5. Traxer O, Keller EX (2020) Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol 38:1883–1894. https://doi.org/10.1007/s00345-019-02654-5

    Article  CAS  PubMed  Google Scholar 

  6. Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12(4):353–363

    Article  CAS  PubMed  Google Scholar 

  7. Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O (2021) Thulium fiber laser: ready to dust all urinary stone composition types? World J Urol juin 39(6):1693–1698

    Article  CAS  Google Scholar 

  8. Gupta PK (2007) Is the holmium:YAG laser the best intracorporeal lithotripter for the ureter? A 3-year retrospective study. J Endourol mars 21(3):305–309

    Article  Google Scholar 

  9. Panthier F, Doizi S, Lapouge P et al (2021) Comparison of the ablation rates, fissures and fragments produced with 150 μm and 272 μm laser fibers with superpulsed thulium fiber laser: an in vitro study. World J Urol 39:1683–1691. https://doi.org/10.1007/s00345-020-03186-z

    Article  CAS  PubMed  Google Scholar 

  10. Keller EX, De Coninck V, Doizi S, Daudon M, Traxer O (2021) What is the exact definition of stone dust? An in vitro evaluation. World J Urol janv 39(1):187–194

    Article  CAS  Google Scholar 

  11. Ulvik Ø, Æsøy MS, Juliebø-Jones P, Gjengstø P, Beisland C. Thulium Fibre Laser versus Holmium:YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. Eur Urol [Internet]. 14 mars 2022 [cité 16 mars 2022];0(0). Disponible sur: https://www.europeanurology.com/article/S0302-2838(22)01669-4/fulltext

  12. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA et al (2009) The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med 6(7):e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  13. D’yakonov GI, Konov VI, Mikhailov BA, Nikolaev DA, Pak SK, Shcherbakov IA. Comparative performance of infrared solid state lasers in laser lithotripsy. In: Lasers in Urology, Laparoscopy, and General Surgery [Internet]. SPIE; 1991 [cité 28 nov 2023]. p. 156‑62. Disponible sur: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1421/0000/Comparative-performance-of-infrared-solid-state-lasers-in-laser-lithotripsy/https://doi.org/10.1117/12.43924.full

  14. Bader MJ, Pongratz T, Khoder W, Stief CG, Herrmann T, Nagele U et al (2015) Impact of pulse duration on Ho: YAG laser lithotripsy: fragmentation and dusting performance. World J Urol 33(4):471–477

    Article  PubMed  Google Scholar 

  15. Kang M, Son H, Jeong H, Cho MC, Cho SY (2016) Clearance rates of residual stone fragments and dusts after endoscopic lithotripsy procedures using a holmium laser: 2-year follow-up results. World J Urol 34(11):1591–1597

    Article  PubMed  Google Scholar 

  16. Hardy LA, Vinnichenko V, Fried NM (2019) High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 51:522–530. https://doi.org/10.1002/lsm.23057

    Article  PubMed  Google Scholar 

  17. Andreeva V, Vinarov A, Yaroslavsky I et al (2020) Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol 38:497–503. https://doi.org/10.1007/s00345-019-02785-9

    Article  CAS  PubMed  Google Scholar 

  18. Chew BH, Koo KC, Halawani A, Lundeen CJ, Knudsen BE, Molina WR (2023) Comparing dusting and fragmenting efficiency using the new SuperPulsed thulium fiber laser versus a 120 W Holmium:YAG laser. Investig Clin Urol mai 64(3):265–271

    Article  Google Scholar 

  19. Kwok J-L, Ventimiglia E, De Coninck V et al (2023) Pulsed thulium:YAG laser-ready to dust all urinary stone composition types? Results from a PEARLS analysis. World J Urol 41:2823–2831. https://doi.org/10.1007/s00345-023-04549-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mager R, Balzereit C, Gust K, Hüsch T, Herrmann T, Nagele U et al (2016) The hydrodynamic basis of the vacuum cleaner effect in continuous-flow PCNL instruments: an empiric approach and mathematical model. World J Urol mai 34(5):717–724

    Article  CAS  Google Scholar 

  21. Ray ER, Rumsby G, Smith RD (2016) Biochemical composition of urolithiasis from stone dust: a matched-pair analysis. BJU Int 118(4):618–624

    Article  PubMed  Google Scholar 

  22. Arslan IE, Kilicarslan H, Cicek MC, Gunseren KO, Ocakoglu G, Kaygısız O (2019) Determination of urinary stone composition using biochemical analysis of fluid samples taken during ureterorenoscopic laser lithotripsy. Int Urol Nephrol 51(11):1941–1947

    Article  CAS  PubMed  Google Scholar 

  23. Sierra A, Corrales M, Kolvatzis M, Daudon M, Traxer O (2022) Thulium Fiber Laser’s Dust for Stone Composition Analysis: Is It Enough? A Pilot Study. J Endourol 36(11):1468–1474

    Article  PubMed  Google Scholar 

  24. Hausmann T, Becker B, Gross AJ, Netsch C, Rosenbaum CM (2021) Novel Biocompatible Adhesive to Remove Stone Dust: Usability Trial in a Kidney Model. J Endourol août 35(8):1223–1228

    Article  Google Scholar 

  25. Keller EX, de Coninck V, Audouin M, Doizi S, Bazin D, Daudon M et al (2019) Fragments and dust after Holmium laser lithotripsy with or without « Moses technology »: How are they different? J Biophotonics avr 12(4):e201800227

    Article  Google Scholar 

  26. Jiang P, Peta A, Brevik A, Arada RB, Ayad M, Afyouni AS et al (2022) Ex Vivo Renal Stone Dusting: Impact of Laser Modality, Ureteral Access Sheath, and Suction on Total Stone Clearance. J Endourol avr 36(4):499–507

    Article  Google Scholar 

  27. Buchholz NP, Meier-Padel S, Rutishauser G (1997) Minor residual fragments after extracorporeal shockwave lithotripsy: spontaneous clearance or risk factor for recurrent stone formation? J Endourol août 11(4):227–232

    Article  CAS  Google Scholar 

  28. Kulb TB, Lingeman JE, Coury TA, Steele RE, Newman DM, Mertz JM et al (1986) Extracorporeal shock wave lithotripsy in patients with a solitary kidney. J Urol 136(4):786–788

    Article  CAS  PubMed  Google Scholar 

  29. Sahin C, Tuncer M, Yazıcı O, Horuz R, Çetinel AC, Eryıldırım B et al (2014) Do the residual fragments after shock wave lithotripsy affect the quality of life? Urology sept 84(3):549–554

    Article  Google Scholar 

  30. Osman MM, Alfano Y, Kamp S, Haecker A, Alken P, Michel MS et al (2005) 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol juin 47(6):860–864

    Article  Google Scholar 

  31. Streem SB, Yost A, Mascha E (1996) Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J Urol avr 155(4):1186–1190

    Article  CAS  Google Scholar 

  32. Candau C, Saussine C, Lang H, Roy C, Faure F, Jacqmin D (2000) Natural history of residual renal stone fragments after ESWL. Eur Urol janv 37(1):18–22

    Article  CAS  Google Scholar 

  33. Khaitan A, Gupta NP, Hemal AK, Dogra PN, Seth A, Aron M (2002) Post-ESWL, clinically insignificant residual stones: reality or myth? Urology 59(1):20–24

    Article  PubMed  Google Scholar 

  34. El-Nahas AR, El-Assmy AM, Madbouly K, Sheir KZ (2006) Predictors of Clinical Significance of Residual Fragments after Extracorporeal Shockwave Lithotripsy for Renal Stones. J Endourol 20(11):870–874

    Article  PubMed  Google Scholar 

  35. Rippel CA, Nikkel L, Lin YK, Danawala Z, Olorunnisomo V, Youssef RF et al (2012) Residual Fragments Following Ureteroscopic Lithotripsy: Incidence and Predictors on Postoperative Computerized Tomography. J Urol 188(6):2246–2251

    Article  PubMed  Google Scholar 

  36. Rebuck DA, Macejko A, Bhalani V, Ramos P, Nadler RB (2011) The natural history of renal stone fragments following ureteroscopy. Urology 77(3):564–568

    Article  PubMed  Google Scholar 

  37. Chew BH, Brotherhood HL, Sur RL, Wang AQ, Knudsen BE, Yong C et al (2016) Natural History, Complications and Re-Intervention Rates of Asymptomatic Residual Stone Fragments after Ureteroscopy: a Report from the EDGE Research Consortium. J Urol 195(4 Pt 1):982–986

    Article  PubMed  Google Scholar 

  38. Ozgor F, Simsek A, Binbay M, Akman T, Kucuktopcu O, Sarilar O et al (2014) Clinically insignificant residual fragments after flexible ureterorenoscopy: medium-term follow-up results. Urolithiasis 42(6):533–538

    Article  PubMed  Google Scholar 

  39. Portis AJ, Laliberte MA, Drake S, Holtz C, Rosenberg MS, Bretzke CA (2006) Intraoperative fragment detection during percutaneous nephrolithotomy: evaluation of high magnification rotational fluoroscopy combined with aggressive nephroscopy. J Urol 175(1):162–165

    Article  PubMed  Google Scholar 

  40. Altunrende F, Tefekli A, Stein RJ, Autorino R, Yuruk E, Laydner H et al (2011) Clinically insignificant residual fragments after percutaneous nephrolithotomy: medium-term follow-up. J Endourol 25(6):941–945

    Article  PubMed  Google Scholar 

  41. Olvera-Posada D, Ali SN, Dion M, Alenezi H, Denstedt JD, Razvi H (2016) Natural History of Residual Fragments After Percutaneous Nephrolithotomy: Evaluation of Factors Related to Clinical Events and Intervention. Urology 97:46–50

    Article  PubMed  Google Scholar 

  42. Emmott AS, Brotherhood HL, Paterson RF, Lange D, Chew BH (2018) Complications, Re-Intervention Rates, and Natural History of Residual Stone Fragments After Percutaneous Nephrolithotomy. J Endourol janv 32(1):28–32

    Article  Google Scholar 

  43. Wong VKF, Que J, Kong EK, Abedi G, Nimmagadda N, Emmott AS et al (2023) The Fate of Residual Fragments After Percutaneous Nephrolithotomy: Results from the Endourologic Disease Group for Excellence Research Consortium. J Endourol juin 37(6):617–622

    Article  Google Scholar 

  44. Raman JD, Bagrodia A, Gupta A, Bensalah K, Cadeddu JA, Lotan Y et al (2009) Natural history of residual fragments following percutaneous nephrostolithotomy. J Urol mars 181(3):1163–1168

    Article  Google Scholar 

  45. Osman Y, Harraz AM, El-Nahas AR, Awad B, El-Tabey N, Shebel H et al (2013) Clinically insignificant residual fragments: an acceptable term in the computed tomography era? Urology avr 81(4):723–726

    Article  Google Scholar 

  46. Ganpule A, Desai M (2009) Fate of residual stones after percutaneous nephrolithotomy: a critical analysis. J Endourol mars 23(3):399–403

    Article  Google Scholar 

  47. 14:00–17:00. ISO. [cité 4 déc 2023]. ISO 4225:1994. Disponible sur: https://www.iso.org/standard/10025.html

  48. Hazard prevention and control in the work environment: Airborne dust [Internet]. [cité 4 déc 2023]. Disponible sur: https://www.who.int/publications-detail-redirect/WHO-SDE-OEH-99-14

  49. Dust National Geographic [Internet]. [cité 28 nov 2023]. Disponible sur: https://education.nationalgeographic.org/resource/dust

  50. US EPA O. Particulate Matter (PM) Basics [Internet]. 2016 [cité 28 nov 2023]. Disponible sur: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

  51. dust Cambridge [Internet]. 2023 [cité 28 nov 2023]. Disponible sur: https://dictionary.cambridge.org/dictionary/english/dust

  52. Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O (2020) Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using Holmium:YAG and Super Pulse Thulium Fiber lasers. BJU Int. 126:159–167

    Article  CAS  PubMed  Google Scholar 

  53. Sierra A, Corrales M, Piñero A, Kolvatzis M, Somani B, Traxer O (2022) Glossary of pre-settings given by laser companies: no consensus! World J Urol sept 40(9):2313–2321

    Article  CAS  Google Scholar 

  54. Sierra A, Corrales M, Piñero A, Traxer O (2022) Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol 40:1529–1535

    Article  PubMed  Google Scholar 

  55. Panthier F, Abid N, Hoznek A, Traxer O, Meria P, Almeras C et al (2023) 2022 Recommendations of the AFU Lithiasis Committee: Laser: utilization and settings. Progres En Urol J Assoc Francaise Urol Soc Francaise Urol 33(14):825–842

    CAS  Google Scholar 

  56. Dragos LB, Somani BK, Keller EX, De Coninck VMJ, Herrero MRM, Kamphuis GM et al (2019) Characteristics of current digital single-use flexible ureteroscopes versus their reusable counterparts: an in-vitro comparative analysis. Transl Androl Urol sept 8(Suppl 4):S359–S370

    Article  Google Scholar 

  57. Keller EX, Doizi S, Villa L, Traxer O (2019) Which flexible ureteroscope is the best for upper tract urothelial carcinoma treatment? World J Urol 37(11):2325–2333

    Article  PubMed  Google Scholar 

  58. Keller EX, Kronenberg P, Tailly T, Corrales M, Juliebø-Jones P, Pietropaolo A et al (2022) Laser accessories: surgical fibers, strippers, cleavers, and protective glasses. Curr Opin Urol 32(3):330–338. https://doi.org/10.1097/MOU.0000000000000977

    Article  PubMed  Google Scholar 

  59. Solano C, Chicaud M, Kutchukian S, Candela L, Corrales M, Panthier F et al (2023) Optimizing Outcomes in Flexible Ureteroscopy: A Narrative Review of Suction Techniques. J Clin Med 12(8):2815

    Article  PubMed  PubMed Central  Google Scholar 

  60. PC200_Zhuhai Pusen Medical Technology Co., Ltd. https://www.pusenmedical.com/en/displayproduct-41-11.html. Accessed 30 Apr 2024

  61. Gauhar V, Somani BK, Heng CT, Gauhar V, Chew BH, Sarica K et al (2022) Technique, Feasibility, Utility, Limitations, and Future Perspectives of a New Technique of Applying Direct In-Scope Suction to Improve Outcomes of Retrograde Intrarenal Surgery for Stones. J Clin Med 11(19):5710

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gauhar V, Traxer O, Castellani D, Ragoori D, Heng CT, Chew BH et al (2023) A Feasibility Study on Clinical Utility, Efficacy and Limitations of 2 Types of Flexible and Navigable Suction Ureteral Access Sheaths in Retrograde Intrarenal Surgery for Renal Stones. Urology 178:173–179

    Article  PubMed  Google Scholar 

  63. Gauhar V, Ong CSH, Traxer O, Chew BH, Gadzhiev N, Teoh JYC et al (2023) Step-by-step guide to flexible and navigable suction ureteric access sheath (FANS). Urol Video J 20:100250

    Article  Google Scholar 

  64. Lievore E, Boeri L, Zanetti SP, Fulgheri I, Fontana M, Turetti M et al (2021) Clinical Comparison of Mini-Percutaneous Nephrolithotomy with Vacuum Cleaner Effect or with a Vacuum-Assisted Access Sheath: A Single-Center Experience. J Endourol mai 35(5):601–608

    Article  Google Scholar 

  65. De Coninck V, Somani B, Sener ET, Emiliani E, Corrales M, Juliebø-Jones P et al (2022) Ureteral Access Sheaths and Its Use in the Future: A Comprehensive Update Based on a Literature Review. J Clin Med 11(17):5128

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sacks EM, Fajardo LL, Hillman BJ, Drach GW, Gaines JA, Claypool HR et al (1990) Prospective comparison of plain abdominal radiography with conventional and digital renal tomography in assessing renal extracorporeal shock wave lithotripsy patients. J Urol 144(6):1341–1346

    Article  CAS  PubMed  Google Scholar 

  67. Pearle MS, Watamull LM, Mullican MA (1999) Sensitivity of noncontrast helical computerized tomography and plain film radiography compared to flexible nephroscopy for detecting residual fragments after percutaneous nephrostolithotomy. J Urol 162(1):23–26

    Article  CAS  PubMed  Google Scholar 

  68. Tonyali S, Emiliani E, Şener TE, Pietropaolo A, Ӧzsoy M, Aboumarzouk O et al (2022) Definition of clinically insignificant residual fragments after percutaneous nephrolithotomy among urologists: a world-wide survey by EAU-YAU Endourology and Urolithiasis Working Group. Cent Eur J Urol 75(3):311–316

    Google Scholar 

  69. Hamamoto S, Yasui T, Okada A, Taguchi K, Kawai N, Ando R et al (2014) Endoscopic combined intrarenal surgery for large calculi: simultaneous use of flexible ureteroscopy and mini-percutaneous nephrolithotomy overcomes the disadvantageous of percutaneous nephrolithotomy monotherapy. J Endourol 28(1):28–33

    Article  PubMed  Google Scholar 

  70. Scoffone CM, Cracco CM, Cossu M, Grande S, Poggio M, Scarpa RM (2008) Endoscopic combined intrarenal surgery in Galdakao-modified supine Valdivia position: a new standard for percutaneous nephrolithotomy? Eur Urol 54(6):1393–1403

    Article  PubMed  Google Scholar 

  71. Stern KL, Sur RL, Lim ES, Kong E, Wong KFV, Brar H et al (2023) Long-term follow-up on dusting versus basketing during ureteroscopy: a prospective multicenter trial from the EDGE Research Consortium. Urolithiasis 51(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  72. Corrales M, Doizi S, Barghouthy Y, Traxer O, Daudon M (2021) Classification of Stones According to Michel Daudon: A Narrative Review. Eur Urol Focus 7(1):13–21

    Article  PubMed  Google Scholar 

Download references

Funding

EAU Scholarship Program Grant 2024; AFU Reaserch Grant 2023.

Author information

Authors and Affiliations

Authors

Contributions

FPT, EXK, DT, JLK: project development, data collection, data analysis, manuscript writing and editing. MM, OT: project development, manuscript editing.

Corresponding author

Correspondence to Frederic Panthier.

Ethics declarations

Conflict of interest

Jia-Lun Kwok, Manoj Monga, and David Tzou have no specific conflicts of interest relevant to this work. Frederic Panthier is a consultant for Dornier MedTech. Etienne Xavier Keller is a speaker and/or consultant for Coloplast, Olympus and Boston Scientific, and has no specific conflicts of interest relevant to this study. Olivier Traxer is a consultant for Boston Scientific, Coloplast, EMS, IPG, Quanta and Rocamed, and has no specific conflicts relevant to this work.

Ethical approval

This article does not contain any studies with human participants performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthier, F., Kwok, JL., Tzou, D.T. et al. What is the definition of stone dust and how does it compare with clinically insignificant residual fragments? A comprehensive review. World J Urol 42, 292 (2024). https://doi.org/10.1007/s00345-024-04993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00345-024-04993-4

Keywords

Navigation