Skip to main content

Advertisement

Log in

Necessity of differentiating small (< 10 mm) and large (≥ 10 mm) PI-RADS 4

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) provides reasonable performance in detecting significant cancers. Still, it is unclear about whether all PI-RADS 4 lesions show the same cancer detection rate (CDR) regardless of tumor size. The aim was to compare the CDRs of small (< 10 mm) and large (≥ 10 mm) PI-RADS 4.

Methods

After magnetic resonance imaging (MRI) was performed in 684 men, a radiologist interpreted the MR images and detected 281 index lesions categorized as PI-RADS 4 in 281 men. PI-RADS 4 lesions were divided into small and large groups on size of 10 mm. Overall and significant CDRs were compared between the groups. A significant cancer was defined as one with Gleason score (GS) ≥ 7 or tumor volume ≥ 0.5 ml. Tumor volumes were roughly calculated as πr34/3 (π = 3.14 and r = a half of tumor size) and were compared between the groups. Standard reference was a biopsy examination. Fisher’s exact and Mann–Whitney tests were used for statistical analysis.

Results

The overall CDRs of small and large groups were 39.0% (53/136) and 59.3% (86/145), respectively, (p = 0.0008). The median tumor volumes of cancer-proven small and large groups were 0.18 ml (0.01–0.38 ml) and 0.70 ml (0.52–1.44 ml), respectively (p < 0.0001). Using GS or tumor volume, the significant CDRs of these groups were 26.5% (36/136) and 59.3% (86/145), respectively (p < 0.0001), and using GS alone, 26.5% (36/136) and 39.3% (57/145), respectively (p = 0.0232).

Conclusions

PI-RADS 4 lesions should be sub-divided on size of 10 mm because of different significant CDRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69:16–40

    Article  Google Scholar 

  2. Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, Padhani AR, Margolis D, Macura KJ, Haider MA, Cornud F, Choyke PL (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69:41–49

    Article  Google Scholar 

  3. Purysko AS, Rosenkrantz AB, Barentsz JO, Weinreb JC, Macura KJ (2016) PI-RADS version 2: a pictorial update. Radiographics 36:1354–1372

    Article  Google Scholar 

  4. Greer MD, Shih JH, Lay N, Barrett T, Kayat Bittencourt L, Borofsky S, Kabakus IM, Law YM, Marko J, Shebel H, Mertan FV, Merino MJ, Wood BJ, Pinto PA, Summers RM, Choyke PL, Turkbey B (2017) Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in PI-RADS version 2. Radiology 285:859–869

    Article  Google Scholar 

  5. Hofbauer SL, Maxeiner A, Kittner B, Heckmann R, Reimann M, Wiemer L, Asbach P, Haas M, Penzkofer T, Stephan C, Friedersdorff F, Fuller F, Miller K, Cash H (2018) Validation of prostate imaging reporting and data system version 2 for the detection of prostate cancer. J Urol 200:767–773

    Article  Google Scholar 

  6. Mehralivand S, Bednarova S, Shih JH, Mertan FV, Gaur S, Merino MJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B (2017) Prospective evaluation of PI-RADS version 2 using the international society of urological pathology prostate cancer grade group system. J Urol 198:583–590

    Article  Google Scholar 

  7. Park SY, Jung DC, Oh YT, Cho NH, Choi YD, Rha KH, Hong SJ, Han K (2016) Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 280:108–116

    Article  Google Scholar 

  8. Tan N, Lin WC, Khoshnoodi P, Asvadi NH, Yoshida J, Margolis DJ, Lu DS, Wu H, Sung KH, Lu DY, Huang J, Raman SS (2017) In-Bore 3-T MR-guided transrectal targeted prostate biopsy: prostate imaging reporting and data system version 2-based diagnostic performance for detection of prostate cancer. Radiology 283:130–139

    Article  Google Scholar 

  9. Thai JN, Narayanan HA, George AK, Siddiqui MM, Shah P, Mertan FV, Merino MJ, Pinto PA, Choyke PL, Wood BJ, Turkbey B (2018) Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer. Radiology 288:485–491

    Article  Google Scholar 

  10. Rosenkrantz AB, Babb JS, Taneja SS, Ream JM (2017) Proposed adjustments to PI-RADS version 2 decision rules: impact on prostate cancer detection. Radiology 283:119–129

    Article  Google Scholar 

  11. Epstein JI, Walsh PC, Carmichael M, Brendler CB (1994) Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271:368–374

    Article  CAS  Google Scholar 

  12. Epstein JI, Walsh PC, Brendler CB (1994) Radical prostatectomy for impalpable prostate cancer: the Johns Hopkins experience with tumors found on transurethral resection (stages T1A and T1B) and on needle biopsy (stage T1C). J Urol 152:1721–1729

    Article  CAS  Google Scholar 

  13. Jack GS, Cookson MS, Coffey CS, Vader V, Roberts RL, Chang SS, Smith JA Jr, Shappell SB (2002) Pathological parameters of radical prostatectomy for clinical stages T1c versus T2 prostate adenocarcinoma: decreased pathological stage and increased detection of transition zone tumors. J Urol 168:519–524

    Article  Google Scholar 

  14. Bastian PJ, Mangold LA, Epstein JI, Partin AW (2004) Characteristics of insignificant clinical T1c prostate tumors. A contemporary analysis. Cancer 101:2001–2005

    Article  Google Scholar 

  15. Jeldres C, Suardi N, Walz J, Hutterer GC, Ahyai S, Lattouf JB, Haese A, Graefen M, Erbersdobler A, Heinzer H, Huland H, Karakiewicz PI (2008) Validation of the contemporary epstein criteria for insignificant prostate cancer in European men. Eur Urol 54:1306–1313

    Article  Google Scholar 

  16. Oon SF, Watson RW, O’Leary JJ, Fitzpatrick JM (2011) Epstein criteria for insignificant prostate cancer. BJU Int 108:518–525

    Article  Google Scholar 

  17. Lee SE, Kim DS, Lee WK, Park HZ, Lee CJ, Doo SH, Jeong SJ, Yoon CY, Byun SS, Choe G, Hwang SI, Lee HJ, Hong SK (2010) Application of the Epstein criteria for prediction of clinically insignificant prostate cancer in Korean men. BJU Int 105:1526–1530

    Article  Google Scholar 

  18. Hong SK, Na W, Park JM, Byun SS, Oh JJ, Nam JS, Jeong CW, Choe G, Lee HJ, Hwang SI, Lee SE (2011) Prediction of pathological outcomes for a single microfocal (</=3 mm) Gleason 6 prostate cancer detected via contemporary multicore (>/=12) biopsy in men with prostate-specific antigen </=10 ng/mL. BJU Int 108:1101–1105

    Article  Google Scholar 

  19. Chondros K, Karpathakis N, Heretis I, Mavromanolakis E, Chondros N, Sofras F, Mamoulakis C (2015) Validation of revised Epstein’s criteria for insignificant prostate cancer prediction in a Greek subpopulation. Hippokratia 19:30–33

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere O, Logager V, Futterer JJ (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  Google Scholar 

  21. Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mege-Lechevallier F, Colombel M, Rouviere O (2013) Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 23:2019–2029

    Article  Google Scholar 

  22. Mottet N, van den Bergh RCN, Briers E, Bourke L, Cornford P, De Santis M, De Santis M, Gillessen S, Govorov A, Grummet J, Henry AM, Lam TB, Mason MD, van der Poel HG, van der Kwast TH, Rouvière O, Wiegel T, van denBroeck T, Cumberbatch M, Fossati N, Gross T, Lardas M, Liew M, Moris L, Schoots IG, Willemse PM (2019) EAU—ESTRO—ESUR—SIOG guidelines on prostate cancer https://uroweb.org/guidelines/2019

  23. van den Bergh RC, Roemeling S, Roobol MJ, Roobol W, Schroder FH, Bangma CH (2007) Prospective validation of active surveillance in prostate cancer: the PRIAS study. Eur Urol 52:1560–1563

    Article  Google Scholar 

  24. Rais-Bahrami S, Siddiqui MM, Vourganti S, Turkbey B, Rastinehad AR, Stamatakis L, Truong H, Walton-Diaz A, Hoang AN, Nix JW, Merino MJ, Wood BJ, Simon RM, Choyke PL, Pinto PA (2015) Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate-specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies. BJU Int 115:381–388

    Article  CAS  Google Scholar 

  25. Radtke JP, Boxler S, Kuru TH, Wolf MB, Alt CD, Popeneciu IV, Steinemann S, Huettenbrink C, Bergstraesser-Gasch C, Klein T, Kesch C, Roethke M, Becker N, Roth W, Schlemmer HP, Hohenfellner M, Hadaschik BA (2015) Improved detection of anterior fibromuscular stroma and transition zone prostate cancer using biparametric and multiparametric MRI with MRI-targeted biopsy and MRI-US fusion guidance. Prostate Cancer Prostatic Dis 18:288–296

    Article  CAS  Google Scholar 

  26. Fascelli M, Rais-Bahrami S, Sankineni S, Brown AM, George AK, Ho R, Frye T, Kilchevsky A, Chelluri R, Abboud S, Siddiqui MM, Merino MJ, Wood BJ, Choyke PL, Pinto PA, Turkbey B (2016) Combined biparametric prostate magnetic resonance imaging and prostate-specific antigen in the detection of prostate cancer: a validation study in a biopsy-naive patient population. Urology 88:125–134

    Article  Google Scholar 

  27. Kuhl CK, Bruhn R, Kramer N, Nebelung S, Heidenreich A, Schrading S (2017) Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285:493–505

    Article  Google Scholar 

  28. Kang Z, Min X, Weinreb J, Li Q, Feng Z, Wang L (2018) Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 212:W1–W9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SYP: data collection, data analysis, and manuscript writing/editing. BKP: project development, and manuscript writing/editing.

Corresponding author

Correspondence to Byung Kwan Park.

Ethics declarations

Conflict of interest

None of the authors have conflict of interest to report.

Research involving human participants and/or animals

This study was retrospectively performed on human participants but not animals.

Informed consent

This retrospective study was approved by our IRB and the approval number is 2018-12-069-001. Informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Park, B.K. Necessity of differentiating small (< 10 mm) and large (≥ 10 mm) PI-RADS 4. World J Urol 38, 1473–1479 (2020). https://doi.org/10.1007/s00345-019-02924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-019-02924-2

Keywords

Navigation