Skip to main content

Advertisement

Log in

Advanced Molecular Approaches for Improving Crop Yield and Quality: A Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Advanced molecular approaches for improving crop yield and quality lie in their comprehensive analysis of the latest advancements in molecular techniques that can be applied to enhance crop production. This review paper provides an in-depth analysis of the latest developments in advanced molecular approaches aimed at enhancing crop yield and quality. The paper comprehensively covers a range of techniques, including marker-assisted selection (MAS), genomic selection (CRISPR-Cas9, TALENs, and ZFNs), gene stacking and trait pyramiding, genome editing techniques, RNA interference (RNAi), epigenetic modifications, and multi-omics approaches. Each technique is thoroughly examined and evaluated, with particular attention given to their advantages and limitations, as well as their potential applications in crop improvement. Ultimately, this review can contribute to the development of more effective and sustainable approaches to crop improvement, which is crucial for ensuring food security and environmental sustainability in the face of an increasingly uncertain future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

No data were used for the research described in the article.

References

  • Abdellatef E, Kamal NM, Tsujimoto H (2021) Tuning beforehand: A foresight on RNA interference (RNAi) and in vitro-derived dsRNAs to enhance crop resilience to biotic and abiotic stresses. Int J Mol Sci 22:7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Ghouri MZ, Jamil A, Khan SH, Ahmad N, Rahman M-u (2021) First-generation transgenic cotton crops. Cotton precision breeding. Springer, New York, pp 229–255

    Book  Google Scholar 

  • Akiyama M (2021) Multi-omics study for interpretation of genome-wide association study. J Hum Genet 66:3–10

    Article  PubMed  Google Scholar 

  • Alam M, Khan MA, Imtiaz M, Khan MA, Naeem M, Shah SA, Ahmad SH, Khan L (2020) Indole-3-acetic acid rescues plant growth and yield of salinity stressed tomato (Lycopersicon esculentum L.). Gesunde Pflanzen 72:87–95

    Article  Google Scholar 

  • Ali S, Khan N, Tang Y (2022) Epigenetic marks for mitigating abiotic stresses in plants. J Plant Physiol 275:153740

    Article  CAS  PubMed  Google Scholar 

  • Bacha SAS, Iqbal B (2023) Advancing agro-ecological sustainability through emerging genetic approaches in crop improvement for plants. Funct Integr Genomics 23:145

    Article  CAS  PubMed  Google Scholar 

  • Bartkowski B, Theesfeld I, Pirscher F, Timaeus J (2018) Snipping around for food: economic, ethical and policy implications of CRISPR/Cas genome editing. Geoforum 96:172–180

    Article  Google Scholar 

  • Bradshaw JE (2019) Improving the nutritional value of potatoes by conventional breeding and genetic modification. In: Quality breeding in field crops, pp 41–84

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Galli M, Gallavotti A (2022) Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr Opin Plant Biol 65:102134

    Article  CAS  PubMed  Google Scholar 

  • del Mar M-P, Curtin SJ, Gutiérrez-González JJ (2021) Potato improvement through genetic engineering. GM Crops Food 12:479–496

    Article  Google Scholar 

  • Derbyshire MC, Batley J, Edwards D (2022) Use of multiple ‘omics techniques to accelerate the breeding of abiotic stress tolerant crops. Curr Plant Biol 32:100262

    Article  CAS  Google Scholar 

  • Dixit S, Singh UM, Singh AK, Alam S, Venkateshwarlu C, Nachimuthu VV, Yadav S, Abbai R, Selvaraj R, Devi MN (2020) Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 13:1–15

    Article  Google Scholar 

  • Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J (2020) Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy 10:1255

    Article  CAS  Google Scholar 

  • Draga S, Gabelli G, Palumbo F, Barcaccia G (2023) Genome-wide datasets of chicories (Cichorium intybus L.) for marker-assisted crop breeding applications: a systematic review and meta-analysis. Int J Mol Sci 24:663

    Article  Google Scholar 

  • Elsharawy H, Refat M (2023) CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security—a review. Funct Integr Genomics 23:265

    Article  CAS  PubMed  Google Scholar 

  • Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361:1346–1349

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam P, Kumar R, Feroz Z, Vijayaraghavalu S, Kumar M (2022) RNA interference technology in plants: mechanisms and applications in crop improvement. In: Singh RL, Mondal S, Parihar A, Singh PK (eds) Plant genomics for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-16-6974-3_10

    Chapter  Google Scholar 

  • Gomase V, Changbhale S, Patil S, Kale K (2008) Metabolomics. Curr Drug Metab 9:89–98

    Article  CAS  PubMed  Google Scholar 

  • Hafeez U, Ali M, Hassan SM, Akram MA, Zafar A (2023) Advances in breeding and engineering climate-resilient crops: a comprehensive review. Int J Res Adv Agric Sci 2:85–99

    Google Scholar 

  • Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJ, Altman A (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37:1217–1235

    Article  CAS  PubMed  Google Scholar 

  • Hassan MM, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X (2021) Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci 26:1133–1152

    Article  CAS  PubMed  Google Scholar 

  • Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SA, Stevens JR, Santos EM (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Fu LP, Gao DR, Li DS, Sen L, Lu CB (2023) Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. J Integr Agric 22:360–370

    Article  CAS  Google Scholar 

  • Huang H, Wu N, Liang Y, Peng X, Shu J (2022) SLNL: a novel method for gene selection and phenotype classification. Int J Intell Syst 37(9):6283–6304. https://doi.org/10.1002/int.22844

    Article  Google Scholar 

  • Iqbal B, Javed Q, Khan I, Tariq M, Ahmad N, Elansary HO, Jalal A, Li G, Du D (2023a) Influence of soil microplastic contamination and cadmium toxicity on the growth, physiology, and root growth traits of Triticum aestivum L. S Afr J Bot 160:369–375

    Article  CAS  Google Scholar 

  • Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, Tariq M, Javed Q, Naeem M, Ahmad N (2023b) Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 10:100283

    Article  Google Scholar 

  • Ishtiaq M, Mazhar M, Maqbool M, Muzamil M (2023) Genetic engineering of horticultural crops. Genetic Engineering: Volume 2: Applications, Bioethics, and Biosafety

  • Johnson R, Puthur JT (2021) Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol Biochem 162:247–257

    Article  CAS  PubMed  Google Scholar 

  • Kaiser N, Douches D, Dhingra A, Glenn KC, Herzig PR, Stowe EC, Swarup S (2020) The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends Food Sci Technol 100:51–66

    Article  CAS  Google Scholar 

  • Kalaitzandonakes N, Willig C, Zahringer K (2023) The economics and policy of genome editing in crop improvement. Plant Genome 16(2):e20248

    Article  PubMed  Google Scholar 

  • Kane AE, Sinclair DA (2019) Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 54:61–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Ghosh A, Rajam MV (2022) RNA Interference technology as a novel and potential alternative for plant improvement agricultural biotechnology: latest research and trends. Springer, Singapore, pp 433–461

    Google Scholar 

  • Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D (2024) Micro/nanoplastics: critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. Sci Total Environ 912:169420

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kumari A, Singh S, VP A, Joshi P, Chauhan AK, Singh M, Hemalatha S (2023) Mechanization in pre-harvest technology to improve quality and safety engineering aspects of food quality and safety. Springer, Singapore, pp 93–114

    Book  Google Scholar 

  • Li W, Wang W, Sun R, Li M, Liu H, Shi Y, Zhu D, Li J, Ma L, Fu S (2023a) Influence of nitrogen addition on the functional diversity and biomass of fine roots in warm-temperate and subtropical forests. For Ecol Manag 545:121309. https://doi.org/10.1016/j.foreco.2023.121309

    Article  Google Scholar 

  • Li Y, Mo X, Xiong J, Huang K, Zheng M, Jiang Q, Su G, Ou Q, Pan H, Jiang C (2023b) Deciphering the probiotic properties and safety assessment of a novel multi-stress-tolerant aromatic yeast Pichia kudriavzevii HJ2 from marine mangroves. Food Biosci 56:103248. https://doi.org/10.1016/j.fbio.2023.103248

    Article  CAS  Google Scholar 

  • Lu L, Zhai X, Li X, Wang S, Zhang L, Wang L, Jin X, Liang L, Deng Z, Li Z, Wang Y, Fu X, Hu H, Wang J, Mei Z, He Z, Wang F (2022) Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Nat Commun 13(1):4672. https://doi.org/10.1038/s41467-022-32364-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Z, Jiang R, Chen J, Chen W (2020) Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J 104:880–891

    Article  CAS  PubMed  Google Scholar 

  • Maji A, Gorai S, Hazra S, Hasan W, Parimala G, Roy P (2023) Marker-assisted breeding in vegetable crops molecular marker techniques: a potential approach of crop improvement. Springer, Singapore, pp 257–301

    Book  Google Scholar 

  • McGowan M, Wang J, Dong H, Liu X, Jia Y, Wang X, Iwata H, Li Y, Lipka AE, Zhang Z (2021) Ideas in genomic selection with the potential to transform plant molecular breeding: a review. Plant Breed Rev 45:273–319

    Google Scholar 

  • Meng X, Liu S, Dong T, Xu T, Ma D, Pan S, Li Z, Zhu M (2020) Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis. Front Plant Sci 11:572540

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirón IJ, Linares C, Díaz J (2023) The influence of climate change on food production and food safety. Environ Res 216:114674

    Article  PubMed  Google Scholar 

  • Mondal S, Gayen D, Karmakar S (2020) Improvement of nutritional quality of rice seed through classical breeding and advance genetic engineering. Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 2: Nutrient Biofortification and Herbicide and Biotic Stress Resistance in Rice, pp 541–562

  • Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA, Martini JW, Fajardo-Flores SB, Gaytan-Lugo LS, Santana-Mancilla PC, Crossa J (2021) A review of deep learning applications for genomic selection. BMC Genom 22:1–23

    Article  Google Scholar 

  • Mrode R, Ojango JMK, Okeyo A, Mwacharo JM (2019) Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects. Front Genet 9:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  • Naidoo V, Naidoo M, Ghai M (2018) Cell-and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scand J Immunol 88:e12723

    Article  PubMed  Google Scholar 

  • Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN (2021) Integration of omics tools for understanding the fish immune response due to microbial challenge. Front Mar Sci 8:668771

    Article  Google Scholar 

  • Osei MK, Prempeh R, Adjebeng-Danquah J, Opoku JA, Danquah A, Danquah E, Blay E, Adu-Dapaah H (2018) Marker-assisted selection (MAS): a fast-track tool in tomato breedingRecent advances in tomato breeding and production. IntechOpen London, UK, pp 93–113

  • Park J, Yoon J, Kwon D, Han MJ, Choi S, Park S, Lee J, Lee K, Lee J, Lee S, Kang KS, Choe S (2021) Enhanced genome editing efficiency of CRISPR PLUS: Cas9 chimeric fusion proteins. Sci Rep 11:16199. https://doi.org/10.1038/s41598-021-95406-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Routhu G, Borah M, Nath P, Deb B (2020) RNA interference (RNAi) and response of plant cells to double stranded RNA (dsRNA). Int J Curr Microbiol Appl Sci 9:3114–3125

    Article  CAS  Google Scholar 

  • Sargent D, Conaty WC, Tissue DT, Sharwood RE (2022) Synthetic biology and opportunities within agricultural crops. J Sustain Agric Environ 1:89–107

    Article  Google Scholar 

  • Scossa F, Alseekh S, Fernie AR (2021) Integrating multi-omics data for crop improvement. J Plant Physiol 257:153352

    Article  CAS  PubMed  Google Scholar 

  • Shailani A, Joshi R, Singla-Pareek SL, Pareek A (2021) Stacking for future: pyramiding genes to improve drought and salinity tolerance in rice. Physiol Plant 172:1352–1362

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M (2020) Breeding and biotechnological interventions for trait improvement: status and prospects. Planta 252:1–18

    Article  Google Scholar 

  • Song L, Wang R, Yang X, Zhang A, Liu D (2023) Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture 13:642

    Article  CAS  Google Scholar 

  • Suboktagin S, Khurshid G, Bilal M, Abbassi AZ, Kwon S-Y, Ahmad R (2023) Improvement of photosynthesis in changing environment: approaches, achievements and prospects. Plant Biotechnol Rep. https://doi.org/10.1007/s11816-023-00871-4

    Article  Google Scholar 

  • Sun YV, Hu Y-J (2016) Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet 93:147–190

    Article  CAS  PubMed  Google Scholar 

  • Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC (2021) Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci 61:839–852

    Article  Google Scholar 

  • Tiwari M, Kumar R, Min D, Jagadish SK (2022) Genetic and molecular mechanisms underlying root architecture and function under heat stress—a hidden story. Plant Cell Environ 45:771–788

    Article  CAS  PubMed  Google Scholar 

  • Tuckeldoe RB, Maluleke MK, Adriaanse P (2023) The effect of coconut coir substrate on the yield and nutritional quality of sweet peppers (Capsicum annum) varieties. Sci Rep 13:2742

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah I, Sajid M, Ahmad N, Rauf K, Khalil R, Iqbal B, Ali M, Filho MCMT, Okla MK, AbdElgawad H, Khan A, Jalal A (2023) Melatonin-induced development of adventitious roots, biosynthesis of secondary cell products and greener synthesis of silver nanoparticles for biological activities using Indigofera heterantha. S Afr J Bot 162:920–934

    Article  CAS  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Wang D, Wang X, Peng X, Xiang Y, Song S, Wang Y, Chen L, Xin VW, Lyu YN, Ji J, Ma ZW, Li CB, Xin H (2018) CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther 25(5):93–105. https://doi.org/10.1038/s41417-018-0016-3

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PV, Mir RA (2023) Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CropsFood 14:1–20

    Google Scholar 

  • Zeng X, Luo Y, Vu NTQ, Shen S, Xia K, Zhang M (2020) CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol 20:1–11

    Article  CAS  Google Scholar 

  • Zheng H, Fan X, Bo W, Yang X, Tjahjadi T, Jin S (2023) A multiscale point-supervised network for counting maize tassels in the wild. Plant Phenomics 5:100. https://doi.org/10.34133/plantphenomics.0100

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32350410400). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through small Groups Project under grant number RGP1/110/44.

Author information

Authors and Affiliations

Authors

Contributions

AAK: investigation; conceptualization; writing—original draft; BI: methodology, writing—original draft, review and editing; AJ: investigation; methodology, writing—original draft, review and editing, project administration; KAK: funding acquisition; AA-A: writing—review and editing; IK: writing—review and editing, methodology; SS: investigation; methodology; AQ: conceptualization, project administration; NE: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Babar Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Jose M. Miguel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Iqbal, B., Jalal, A. et al. Advanced Molecular Approaches for Improving Crop Yield and Quality: A Review. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11253-7

Keywords

Navigation