Skip to main content
Log in

Application of Rhizobium Alleviates the Cadmium Stress-Induced Damage to Growth, Photosynthetic Efficiency, Cell Viability and Yield by Up-Regulating Antioxidants in Cicer arietinum L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A new sustainable approach was aimed to explore the damage caused to legume grown in cadmium (Cd) polluted soil. Owing to the importance of chickpea (Cicer arietinum L.) as a source of protein which is exposed to Cd that imposes severe health hazards. A greenhouse pot experiment was designed to evaluate the potential of Rhizobium application in the amelioration of cadmium stress (Cd; 50 and 100 mg kg− 1 soil) on chickpea cultivar namely Pusa-BG372 on growth (plant length; plant dry biomass; leaf area; and nodule number), photosynthetic pigments (total chlorophyll and carotenoids), stress biomarkers (malondialdehyde, MDA; superoxide radicles; cell viability), defense (proline, superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; stomatal behaviour), and the major enzymes involved in nitrate assimilation (nitrate reductase; NR) and Calvin Cycle (carbonic anhydrase; CA). Among the different tested concentrations, 100 mg kg−1 of Cd reduced the growth, photosynthetic variables, biochemical enzymes activity and increased oxidative stress under Cd stress. However, chickpea plants supplemented with Rhizobium-inoculation under the Cd toxicity revealed significantly increased chlorophyll, carotenoid, and proline contents, activity of CA, NR, and antioxidant enzymes. Aside from improved antioxidant enzyme performance and lower lipid peroxidation, cell viability and stomatal functioning were also improved in Rhizobium-inoculated plants. These observations depicted that application of Rhizobium inoculation to seeds could be useful approach to assist stress tolerance against Cd in crop plants grown in Cd contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HM:

Heavy metal

Cd:

Cadmium

ROS:

Reactive oxygen species

PSII:

Pigment system II

POD:

Peroxidase

SOD:

Superoxide dismutase

CAT:

Catalase

ACC:

Aminocyclopropane-1-carboxylate

IARI:

Indian agriculture research institute

DDW:

Double distilled water

CdCl2 :

Cadmium chloride

DAS:

Days after sowing

CA:

Carbonic anhydrase

NR:

Nitrate reductase

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

NBT:

Nitro-blue tetrazolium

PMSF:

Phenylmethanesulfonylfluoride

EDTA:

Ethylene diamine tetra acetic acid

OD:

Optical density

SEM:

Scanning electron microscope

ANOVA:

Analysis of variance

SPSS:

Statistical package for the social sciences

References

  • Abiala MA, Popoola OO, Olawuyi OJ, Oyelude JO, Akanmu AO, Killani AS, Osonubi O, Odebode AC (2013) Harnessing the potentials of vesicular arbuscular mycorrhizal (VAM) fungi to plant growth-a review. Int j Pure Appl Sci Technol 14(2):61–79

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in Vitro Methods in Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahanger MA, Aziz U, Sahli AA, Alyemeni MN, Ahmad P (2020) Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in Vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules 10(1):147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in Chickpea. Front Plant Sci 7:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86(2):273–286

    Article  CAS  Google Scholar 

  • Alireza H, Farhang M (2011) Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. Afr J Agric Res 6(5):1182–1187

    Google Scholar 

  • Badawy IH, Hmed AA, Sofy MR, Al-Mokadem AZ (2022) Alleviation of cadmium and nickel toxicity and phyto-stimulation of Tomato Plant L. by endophytic Micrococcus luteus and Enterobacter cloacae. Plants (Basel) 11(15):2018

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bavi K, Kholdebarin B, Moradshahi A (2011) Effect of cadmium on growth, protein content and peroxidase activity in pea plants. Pak J Bot 43(3):1467–1470

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Berger A, Boscari A, Horta Araujo N, Maucourt M, Hanchi M, Bernillon S, Brouquisse R (2020) Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatulaSinorhizobium meliloti symbiosis. Front Plant Sci. https://doi.org/10.3389/fpls.2020.01313

    Article  PubMed  PubMed Central  Google Scholar 

  • Bushra S, Faizan S (2019) Oxidative stress and response of antioxidants during cadmium stress in chickpea (Cicer arietinum l.). In: Jain S, Verma N (ed) Recent Research in Agriculture for doubling of farmer’s Income, pp 50–53

  • Bushra S, Faizan S, Mushtaq Z, Hussain A, Hakeem KR (2022) Effect of cadmium stress on the growth, physiology, stress markers, antioxidants and stomatal behaviour of two genotypes of chickpea. Phyton 91(9):1988–2004

    Article  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    Article  CAS  Google Scholar 

  • Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant soil 413(1):203–216

    CAS  Google Scholar 

  • Chiao WT, Syu CH, Chen BC, Juang KW (2019) Cadmium in rice grains from a field trial in relation to model parameters of Cd-toxicity and -absorption in rice seedlings. Ecotoxicol Environ Saf 169:837–847

    Article  CAS  PubMed  Google Scholar 

  • da Silva WR, da Silva FBV, Araújo PRM, do Nascimento CWA, (2017) Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicol Environ Saf 144:522–530

    Article  PubMed  Google Scholar 

  • Dhayalan V, Sudalaimuthu K (2021) Plant growth promoting rhizobacteria in promoting sustainable agriculture. Glob J Environ Sci 7(3):401–418

    Google Scholar 

  • Dida BD, Urga K (2018) Study on the effect of traditional processing methods on nutritional composition and anti nutritional factors in chickpea (Cicer arietinum). Cogent Food Agric 4(1):1422370

    Article  Google Scholar 

  • Dubey RS (2018) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton, pp 629–649

    Chapter  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40(2):445–451

    Article  CAS  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Faizan S (2019) Impact of AM fungi and Azotobacter in the alleviation of Cd-induced growth reduction and activity of antioxidants in Coriandrum Sativum L. Haya Saudi J Life Sci 4:250–261

    Article  Google Scholar 

  • Faizan S, Kausar S, Perveen R (2011) Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L). Biol Med 3(2):196–206

    CAS  Google Scholar 

  • Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68

    Article  CAS  Google Scholar 

  • Fatemi H, Esmaiel Pour B, Rizwan M (2020) Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ Pollut 266(Pt 3):114982

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Caparros P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT (2021) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 87:421–466

    Article  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Lei M, Wang Y, Song B, Yang J (2018) accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res Public Health 15(11):2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258

    Article  CAS  Google Scholar 

  • Haneef I, Faizan S, Perveen R, Kausar S (2014) Impact of bio-fertilizers and different levels of cadmium on the growth, biochemical contents and lipid peroxidation of Plantago ovata Forsk. Saudi J Biol Sci 21(4):305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V (2021) Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10(10):2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Ahmad A (2011) Growth, nitrate reductase activity and antioxidant system in cadmium stressed tomato (Lycopersicon esculentum Mill.) cultivars. Biotechnol Agron Soc Environ 15(3):401–414

    CAS  Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Khaliq A, Noor MA, Tanveer M, Hussain HA, Hussain S, Shah T, Mehmood T (2020) Metal toxicity and nitrogen metabolism in plants: an overview. In: Carbon and Nitrogen Cycling in Soil. Springer, pp 221–248

  • Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166(15):1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  PubMed  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  PubMed  Google Scholar 

  • Janmohammadi M, Bihamta MR, Ghasemzadeh F (2013) Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercet Agron Mold 46(1):49–67

    Article  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43(6):1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Kandoi D, Ruhil K, Govindjee G, Tripathy BC (2022) Overexpression of cytoplasmic C4 Flaveria bidentis carbonic anhydrase in C3 Arabidopsis thaliana increases amino acids, photosynthetic potential, and biomass. Plant Biotechnol J 20(8):1518–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CH, Han SH, Shin Y, Oh SJ, So JS (2014) Bioremediation of Cd by microbially induced calcite precipitation. Appl Biochem Biotechnol 172(6):2907–2915

    Article  CAS  PubMed  Google Scholar 

  • Karimi A, Khodaverdiloo H, Rasouli Sadaghiani M (2017) Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chem Ecol 33(10):963–976

    Article  CAS  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L.(rice). Bio-protocol 6(24):e2061–e2061

    Article  Google Scholar 

  • Ke T, Guo G, Liu J, Zhang C, Tao Y, Wang P, Xu Y, Chen L (2021) Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ Pollut 271:116314

    Article  CAS  PubMed  Google Scholar 

  • Khosropour E, Weisany W, Tahir NA, Hakimi L (2022) Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environ Sci Pollut Res Int 29(12):17476–17486

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391(1):383–398

    Article  CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Hassani Kumleh H (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23(3):529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169(2):323–330

    Article  CAS  Google Scholar 

  • Li FT, Qi JM, Zhang GY, Lin LH, Fang PP, Xu Tao AF, JT, (2013) Effect of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf (Hibiscus cannabinus L.) plant seedlings. J Integr Agric 12(4):610–620

    Article  Google Scholar 

  • Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J (2015) CdS/graphene nanocomposite photocatalysts. Adv Energy Mater 5(14):1500010

    Article  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr Protoc Food Anal Chem 1(1):F4–F2

    Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29(3):177–187

    Article  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Meng Y, Zhang L, Wang L, Zhou C, Shangguan Y, Yang Y (2019) Antioxidative enzymes activity and thiol metabolism in three leafy vegetables under Cd stress. Ecotoxicol Environ Saf 173:214–224

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Mushtaq Z, Faizan S, Gulzar B, Hakeem KR (2021) Inoculation of Rhizobium alleviates salinity stress through modulation of growth characteristics, physiological and biochemical attributes, stomatal activities and antioxidant defence in Cicer arietinum L. J Plant Growth Regul 40(5):2148–2163

    Article  CAS  Google Scholar 

  • Nazir F, Fariduddin Q, Hussain A, Khan TA (2012) Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato. Ecotoxicol Environ Saf 207:111081

    Article  Google Scholar 

  • Nouairi I, Jalali K, Essid S, Zribi K, Mhadhbi H (2019) Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots. Physiol Mol Biol Plants 25(4):921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogundele DT, Adio AA, Oludele OE (2015) Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J Environ Anal Toxicol 5(6):1

    Google Scholar 

  • Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int 134:105046

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Gautam A, Pandey P, Dubey RS (2019) Alleviation of chromium toxicity in rice seedling using Phyllanthus emblica aqueous extract in relation to metal uptake and modulation of antioxidative defense. S Afr J Bot 121:306–316

    Article  CAS  Google Scholar 

  • Pollastri S, Azzarello E, Masi E, Pandolfi C, Mugnai S, Mancuso S (2012) Applications of confocal microscopy in the study of root apparatus. Measuring Roots. Springer, Berlin, Heidelberg, pp 93–108

    Chapter  Google Scholar 

  • Pramanik K, Banerjee S, Mukherjee D, Saha KK, Maiti TK, Mandal NC (2021) Beneficial role of plant growth-promoting rhizobacteria in bioremediation of heavy metal (loid)-contaminated agricultural fields. Microbes: the Foundation Stone of the Biosphere. Springer, Cham, pp 441–495

    Chapter  Google Scholar 

  • Rady MM, Elrys AS, Abo El-Maati MF, Desoky EM (2019) Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiol Biochem 139:558–568

    Article  CAS  PubMed  Google Scholar 

  • Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021) Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Zia Ur Rehman M, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631–632:1175–1191

    Article  ADS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia Ur Rehman M, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G, Spiller M, Vlaeminck SE (2020) Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microb Biotechnol 13(5):1336–1365

    Article  CAS  PubMed  Google Scholar 

  • Sanchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann Bot 75(4):415–419

    Article  CAS  Google Scholar 

  • Semida WM, Hemida KA, Rady MM (2018) Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol Environ Saf 154:171–179

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, Bakshi P (2020) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39(2):509–531

    Article  CAS  Google Scholar 

  • Singh VK, Singh AK, Singh PP, Kumar A (2018) Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agric Ecosyst Environ 267:129–140

    Article  CAS  Google Scholar 

  • Singh P, Singh I, Shah K (2019) Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in silico answer. Front Plant Sci 9:1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium(VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. Biomed Res Int 2018:8031213

    Article  PubMed  PubMed Central  Google Scholar 

  • Su N, Wu Q, Chen H, Huang Y, Zhu Z, Chen Y, Cui J (2019) Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: possible involvement of nitric oxide. Environ Pollut 251:45–55

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Arjumend T, Argın S, Yıldırım E, Katırcıoğlu H, Gürkan B, Ekinci MA, Günes Kocaman A, Bolouri P (2021) Plant root enhancement by plant growth promoting rhizobacteria. Plant Roots. https://doi.org/10.5772/intechopen.99890

    Article  Google Scholar 

  • Vaculík M, Pavlovič A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120:66–73

    Article  PubMed  Google Scholar 

  • Wang Y, Wang J, Guo D, Zhang H, Che Y, Li Y, Tian B, Wang Z, Sun G, Zhang H (2021) Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiol Biochem 167:140–152

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Sun Y, Yashir N, Li X, Guo J, Liu X, Jia H, Ren X, Hua L (2022) Inoculation with rhizobacteria enhanced tolerance of tomato (Solanum lycopersicum L.) plants in response to cadmium stress. J Plant Growth Regul 41(1):445–460

    Article  CAS  Google Scholar 

  • Wu S, Yu K, Li L, Wang L, Liang W (2021) Enhancement of exopolysaccharides production and reactive oxygen species level of Nostoc flagelliforme in response to dehydration. Environ Sci Pollut Res Int 28(26):34300–34308

    Article  PubMed  Google Scholar 

  • Xu ZM, Mei XQ, Tan L, Li QS, Wang LL, He BY, Guo SH, Zhou C, Ye HJ (2018) Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in the shoot of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) cultivars. Environ Sci Pollut Res Int 25(36):36328–36340

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2012) 24-epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Mohammad F, Fariduddin Q (2020) Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biol Plants 26(1):25–39

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sonnewald U (2017) Differences and commonalities of plant responses to single and combined stresses. Plant J 90(5):839–855

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 19(1):252

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu R, Macfie SM, Ding Z (2005) Cadmium-induced plant stress investigated by scanning electrochemical microscopy. J Exp Bot 56(421):2831–2838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author was deeply thankful to Chairman, Botany Department, A.M.U., Aligarh, for providing facilities and assistance for this research and to the University Grant Commission (UGC), New Delhi India, for providing UGC Non-NET Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SB conducted the experimental work; SB analyzed the results and drafted the manuscript, SF and AB edited the manuscript, analyzed the data and finalized the manuscript.

Corresponding author

Correspondence to Sayyada Bushra.

Ethics declarations

Conflict of interest

There is no conflict of interest in this article.

Additional information

Handling Author: Durgesh Kumar Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushra, S., Faizan, S., Badar, A. et al. Application of Rhizobium Alleviates the Cadmium Stress-Induced Damage to Growth, Photosynthetic Efficiency, Cell Viability and Yield by Up-Regulating Antioxidants in Cicer arietinum L.. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11243-9

Keywords

Navigation