Skip to main content
Log in

Reprogramming of Glycine max (Soybean) Proteome in Response to Spodoptera litura (Common Cutworm)-Infestation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Glycine max (Soybean) is an oil-seed cash crop and protein-rich legume with great therapeutic and nutritional potential. Soybean is cultivated worldwide for human food and raw material for industries. The polyphagous herbivore, Spodoptera litura (common cutworm) can cause significant loss to soybean production; making it mandatory to understand the underlying defense mechanisms. In order to decipher the induced plant defense orchestration of soybean in response to S. litura-infestation, a feeding bioassay was conducted, which identified a mild-induced defense upon S. litura-infestation. Further, a comparative proteomics of soybean (Pusa-9712) identified 390 differentially abundant proteins (DAPs) wherein 154 are upregulated whereas 236 are downregulated at log-fold change ≥ 1 and p-value ≤ 0.05. The function-prediction investigations revealed that most of the DAPs were involved in secondary metabolite biosynthesis, protein synthesis, amino acid metabolism, biotic and abiotic stresses, cell wall organisation, transcription and trans-regulation activities. Mapman analysis showed roles of DAPs in the upregulation of a few phenylpropanoid-related proteins, PR-proteins, peroxidases and proteases whereas repression of many of the DAPs involved in biosynthesis of other phenylpropanoids, lignin, anthocyanins, dihydroflavanols, components of shikimate pathways, cell wall proteins and signalling cascades, indicating inadequate plant defense against S. litura-infestation. These DAPs involved in secondary metabolism, reactive oxygen homeostasis and signalling pathway could be potential candidates for further functional analysis and can be selected for genetic manipulation towards improving defense against S. litura-infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Accamando A, Cronin J (2012) Costs and benefits of jasmonic acid induced responses in soybean. Environ Entomol 41(3):551–561

    Article  CAS  PubMed  Google Scholar 

  • Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW (2015) Cues from chewing insects—the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol 26:80–86

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279(5354):1201–1202

    Article  ADS  CAS  PubMed  Google Scholar 

  • Akashi T, Sasaki K, Aoki T, Ayabe S-i, Yazaki K (2009) Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol 149(2):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleynova OA, Kiselev KV, Ogneva ZV, Dubrovina AS (2020) The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response. Int J Mol Sci 21(21):7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari S, Kumar V, Bhatt DN, Irfan M, Datta A (2022) N-acetylglucosamine sensing and metabolic engineering for attenuating human and plant pathogens. Bioengineering (basel) 9(2):64

    Article  CAS  PubMed  Google Scholar 

  • Attaran E, Zeier TE, Griebel T (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21(3):954–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badole S, Bodhankar S (2012) Glycine max (soybean) treatment for diabetes. Bioact Food Diet Interv Diabetes 77:77–82

    Google Scholar 

  • Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 95(16):9402–9406

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar K, Muthu C, Raj GA, Kingsley S, Ignacimuthu S (2012) Ovicidal activity of Atalantia monophylla (L.) correa against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Asian Pac J Trop Biomed 2(12):987–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi J, Felton G, Mueller A (1994) Induced resistance in soybean to Helicoverpa zea: role of plant protein quality. J Chem Ecol 20(1):183–198

    Article  CAS  PubMed  Google Scholar 

  • Blümke A, Falter C, Herrfurth C, Sode B, Bode R, Schäfer W, Feussner I, Voigt CA (2014) Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiol 165(1):346–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant-Microbe Interact 20(11):1406–1420

    Article  CAS  PubMed  Google Scholar 

  • Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6(11):e1001216

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brahman SK, Awasthi A, Singh S (2018) Studies on insectpests of soybean (Glycine max) with special reference to seasonal incidence of Lepidopteran defoliators. J Pharmacogn Phytochem 7(1):1808–1811

    Google Scholar 

  • Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res 10(4):1505–1518

    Article  CAS  PubMed  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Chauhan G, Joshi O (2005) Soybean (Glycine max): the 21st century crop. Indian J Agric Sci 75(8):461–469

    Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AK, Srivastava S (2007) Efficacy and economics of some neem based products against tobacco caterpillar, Spodoptera litura F. on soybean in Madhya Pradesh. India Int J Agric Sci 3:15–17

    Google Scholar 

  • Choudhary G, Wu S-L, Shieh P, Hancock WS (2003) Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res 2(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon L, Pieterse CM (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142(1):352–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal G, Jindal V, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Dixit G, Srivastava A, Rai KM, Dubey RS, Srivastava R, Verma PC (2020) Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests. Plant Signal Behav 15(5):1747689

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, Mechtler K (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13(8):3679–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egusa M, Akamatsu H, Tsuge T, Otani H, Kodama M (2008) Induced resistance in tomato plants to the toxin-dependent necrotrophic pathogen Alternaria alternata. Physiol Mol Plant Pathol 73(4–5):67–77

    Article  CAS  Google Scholar 

  • Fan R, Wang H, Wang Y, Yu D (2012) Proteomic analysis of soybean defense response induced by cotton worm (prodenia litura, fabricius) feeding. Proteome Sci 10(1):1–11

    Article  Google Scholar 

  • Fand BB, Sul NT, Bal SK, Minhas P (2015) Temperature impacts the development and survival of common cutworm (Spodoptera litura): simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS ONE 10(4):e0124682

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lam H-M, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2(8):1–10

    Article  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(7273):660–664

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganji Z, Fatehi F, Mehraban FH, Haynes PA, Naveh VH, Farrokhi N (2022) Comparative Pistacia vera leaf proteomics in response to herbivory of the common pistachio psylla (Agonoscena pistaciae). Arthropod-Plant Interact 16(2):215–226

    Article  CAS  Google Scholar 

  • Garad G, Shivpuje P, Bilapate G (1984) Life tables of Spodoptera litura (Fabricius) on different hosts. Proc Indian Acad Sci 93:29–33

    Article  Google Scholar 

  • Ghosh S, Singh UK, Meli VS, Kumar V, Kumar A, Irfan M, Chakraborty N, Chakraborty S, Datta A (2013) Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene. PLoS ONE 8(9):e76029

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover S, Cardona JB, Zogli P, Alvarez S, Naldrett MJ, Sattler SE, Louis J (2022) Reprogramming of sorghum proteome in response to sugarcane aphid infestation. Plant Sci 320:111289

    Article  CAS  PubMed  Google Scholar 

  • Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, Zhu L, He G (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146(4):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie D (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Biol 50(1):97–131

    Article  CAS  Google Scholar 

  • Herbert B, Galvani M, Hamdan M, Olivieri E, MacCarthy J, Pedersen S, Righetti PG (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22(10):2046–2057

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol 14(4):422–428

    Article  CAS  PubMed  Google Scholar 

  • Irfan M, Ghosh S, Kumar V, Chakraborty N, Chakraborty S, Datta A (2014) Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening. J Exp Bot 65(20):5835–5848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irfan M, Ghosh S, Meli VS, Kumar A, Kumar V, Chakraborty N, Chakraborty S, Datta A (2016) Fruit ripening regulation of α-mannosidase expression by the MADS Box transcription factor ripening inhibitor and ethylene front. Plant Sci 7:10

    Google Scholar 

  • Irfan M, Kumar P, Kumar V, Datta A (2022) Fruit ripening specific expression of β-DN-acetylhexosaminidase (β-Hex) gene in tomato is transcriptionally regulated by ethylene response factor SlERF. E4. Plant Sci 323:111380

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5(5):415–424

    Article  CAS  PubMed  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35(2):441–453

    Article  CAS  PubMed  Google Scholar 

  • Keshan R, Singh IK, Singh A (2021) Genome wide investigation of MAPKKKs from Cicer arietinum and their involvement in plant defense against Helicoverpa armigera. Physiol Mol Plant Pathol 115:101685

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Ketudat Cairns JR, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67(20):3389–3405

    Article  CAS  PubMed  Google Scholar 

  • Khajuria C, Wang H, Liu X, Wheeler S, Reese JC, El Bouhssini M, Whitworth RJ, Chen M-S (2013) Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genomics 14(1):1–16

    Article  Google Scholar 

  • Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A (2016a) Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J 14(6):1394–1405

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A (2016b) Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 253(2):581–594

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Irfan M, Datta A (2019) Manipulation of oxalate metabolism in plants for improving food quality and productivity. Phytochemistry 158:103–109

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Thakur R, Gupta A, Kumar V, Thakur A, Yadav S (2022a) Ethylene: signalling, transgenics, applications in crop improvement. Ethylene in plant biology. Wiley, Hoboken

    Google Scholar 

  • Kumari C, Sharma M, Kumar V, Sharma R, Kumar V, Sharma P, Kumar P, Irfan M (2022b) Genome Editing technology for genetic amelioration of fruits and vegetables for alleviating post-harvest loss. Bioengineering (basel) 9(4):176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrun-Garcia A, Ouaked F, Chiltz A, Pugin A (1998) Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15(6):773–781

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Kogan M (1990) Influence of induced resistance in soybean on the development and nutrition of the soybean looper and the Mexican bean beetle. Entomo Exp Appl 55(2):131–138

    Article  Google Scholar 

  • Louis J, Shah J (2013) Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 4:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Caldwell KS, Wroblewski T, Wright ME, Michelmore RW (2009) Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. Plant Cell 21(8):2458–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–589

    Article  CAS  PubMed  Google Scholar 

  • Marwoto S (2008) Strategy and control technology components of armyworm (Spodoptera litura Fabricius) on soybean. J Agric Res Dev 27(4):131–136

    Google Scholar 

  • Mendelsohn R, Balick MJ (1995) The value of undiscovered pharmaceuticals in tropical forests. Econom Bot 49(2):223–228

    Article  Google Scholar 

  • Mitsunami T, Nishihara M, Galis I, Alamgir KM, Hojo Y, Fujita K, Arimura GI (2014) Overexpression of the PAP1 transcription factor reveals a complex regulation of flavonoid and phenylpropanoid metabolism in Nicotiana tabacum plants attacked by Spodoptera litura. PLoS ONE 9(9):e108849

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11(7):643–658

    Article  CAS  PubMed  Google Scholar 

  • Munir S, Khan MRG, Song J, Munir S, Zhang Y, Ye Z, Wang T (2016) Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). Plant Physiol Biochem 102:167–179

    Article  CAS  PubMed  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Caterpillar saliva beats plant defenses. Nature 416(6881):599–600

    Article  ADS  CAS  PubMed  Google Scholar 

  • Naresh S, Ong MK, Thiagarajah K, Muttiah NBSJ, Kunasundari B, Lye HS (2019) Engineered soybean-based beverages and their impact on human health. Non-alcoholic beverages. Elsevier, Amsterdam, pp 329–361

    Chapter  Google Scholar 

  • Nathan SS, Kalaivani K (2005) Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biol Control 34(1):93–98

    Article  CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’plants to translate volatile signals. Plant J 45(2):275–291

    Article  CAS  PubMed  Google Scholar 

  • Patel JS, Selvaraj V, Gunupuru LR, Kharwar RN, Sarma BK (2020) Plant G-protein signaling cascade and host defense. 3 Biotech 10(5):1–8

    Article  Google Scholar 

  • Pawar VA, Srivastava S, Tyagi A, Tayal R, Shukla SK, Kumar V (2023) Efficacy of bioactive compounds in the regulation of metabolism and pathophysiology in cardiovascular diseases. Curr Cardiol Rep 25:1041–1052

    Article  PubMed  Google Scholar 

  • Prajapati VK, Varma M, Vadassery J (2020) In silico identification of effector proteins from generalist herbivore Spodoptera litura. BMC Genomics 21(1):1–16

    Article  Google Scholar 

  • Punithavalli M, Sharma A, Rajkumar MB (2014) Seasonality of the common cutworm Spodoptera litura in a soybean ecosystem. Phytoparasitica 42(2):213–222

    Article  Google Scholar 

  • Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9-and Cf-9–dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11(2):273–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade L, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Res 76(2–3):199–219

    Article  Google Scholar 

  • Saraiva KD, Fernandes de Melo D, Morais VD, Vasconcelos IM, Costa JH (2014) Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions. Plant Cell Rep 33(9):1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT (2011) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156(3):1520–1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH III, Teal PE (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci USA 106(2):653–657

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Choi M-Y, Paik C-H (2009) Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stål (Homoptera: Delphacidae). Pestic Biochem Physiol 95(2):77–84

    Article  CAS  Google Scholar 

  • Shannon PT, Grimes M, Kutlu B, Bot JJ, Galas DJ (2013) RCytoscape: tools for exploratory network analysis. BMC Bioinform 14(1):1–9

    Article  Google Scholar 

  • Singh O, Singh K (1990) Insect pests of soybean and their management. Indian Farming 39(10):9–38

    Google Scholar 

  • Singh A, Singh IK, Verma PK (2008) Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J Exp Bot 59(9):2379–2392

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh S, Singh R, Kumar S, Singh SK, Singh IK (2021) Dynamics of Zea mays transcriptome in response to a polyphagous herbivore. Spodoptera Litura Funct Integr Genomics 21(5):571–592

    Article  PubMed  Google Scholar 

  • Srinivas P, Danielson SD, Smith CM, Foster JE (2001) Cross-Resistance and resistance longevity as induced by bean leaf beetle, Cerotoma trifurcata and soybean looper, Pseudoplusia includens herbivory on soybean. J Insect Sci 1(1):1–5

    Article  Google Scholar 

  • Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T (2000) Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol 124(3):1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamhane VA, Sant SS, Jadhav AR, War AR, Sharma HC, Jaleel A, Kashikar AS (2021) Label-free quantitative proteomics of Sorghum bicolor reveals the proteins strengthening plant defense against insect pest Chilo partellus. Proteome Sci 19(1):1–25

    Article  Google Scholar 

  • Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA (2017) Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot 68(16):4709–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106(41):17588–17593

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012a) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159(3):1159–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Scholz SS, Mithöfer A (2012b) Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. Plant Signal Behav 7(10):1277–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcu C-M, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteom Res 8(8):4077–4091

    Article  CAS  Google Scholar 

  • Vandermoten S, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E, Francis F (2014) Comparative analyses of salivary proteins from three aphid species. Insect Mol Biol 23(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Vasudev A, Sohal S (2016) Partially purified Glycine max proteinase inhibitors: potential bioactive compounds against tobacco cutworm, Spodoptera litura (Fabricius, 1775)(Lepidoptera: Noctuidae). Turk J Zool 40(3):379–387

    Article  CAS  Google Scholar 

  • Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, Rao AD (2020) Plant lipoxygenases and their role in plant physiology. J Plant Biol 63(2):83–95

    Article  CAS  Google Scholar 

  • Walley JW, Shen Z, Sartor R, Wu KJ, Osborn J, Smith LG, Briggs SP (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci USA 110(49):E4808–E4817

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang H, Fan R, Yang Q, Yu D (2014) Transcriptome analysis of soybean lines reveals transcript diversity and genes involved in the response to common cutworm (Spodoptera litura F abricius) feeding. Plant Cell Environ 37(9):2086–2101

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu J, Chen H, Shan Z, Shen X, Duan B, Zhang C, Yang Z, Zhang X, Qiu D (2017) Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell Tissue Organ Culture (PCTOC) 129(3):511–520

    Article  CAS  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104(25):10536–10541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Win J, Chaparro-Garcia A, Belhaj K, Saunders D, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout S (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, New York, pp 235–247

    Google Scholar 

  • Woldemariam MG, Ahern K, Jander G, Tzin V (2018) A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signal Behav 13(1):4709–4723

    Article  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19(3):1096–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav M, Pandey J, Chakraborty A, Hassan MI, Kundu JK, Roy A, Singh IK, Singh A (2022) A comprehensive analysis of calmodulin-like proteins of Glycine max indicates their role in calcium signaling and plant defense against insect attack. Front Plant Sci. https://doi.org/10.3389/fpls.2022.817950

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates JR, Eng JK, McCormack AL (1995) Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal Chem 67(18):3202–3210

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Yan F, Ji J, Li Y, Wang R, Xu C (2012) Proteomic analysis of Arabidopsis thaliana leaves infested by tobacco whitefly Bemisia tabaci (Gennadius) B biotype. Plant Mol Biol Reporter 30(2):379–390

    Article  CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Baldwin IT (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc Natl Acad Sci USA 101(6):1607–1612

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X (2017) Proteomic analysis by iTRAQ-MRM of soybean resistance to lamprosema indicate. BMC Genomics 18(1):1–22

    Article  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6(11):520–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang P-J, Shu J-P, Fu C-X, Zhou Y, Hu Y, Zalucki MP, Liu S-S (2008) Trade-offs between constitutive and induced resistance in wild crucifers shown by a natural, but not an artificial, elicitor. Oecologia 157(1):83–92

    Article  ADS  PubMed  Google Scholar 

  • Zhang J-H, Sun L-W, Liu L-L, Lian J, An S-L, Wang X, Zhang J, Jin J-L, Li S-Y, Xi J-H (2010) Proteomic analysis of interactions between the generalist herbivore Spodoptera exigua (Lepidoptera: Noctuidae) and Arabidopsis thaliana. Plant Mol Biol Reporter 28(2):324–333

    Article  CAS  Google Scholar 

  • Zhang Y, Fan J, Sun J, Francis F, Chen J (2017) Transcriptome analysis of the salivary glands of the grain aphid. Sitobion Avenae Sci Rep 7(1):1–14

    Google Scholar 

  • Zhang X, Yin F, Xiao S, Jiang C, Yu T, Chen L, Ke X, Zhong Q, Cheng Z, Li W (2019) Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC Plant Biol 19(1):1–11

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided to AS by Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India (ECR/2017/002478; SPG/2021/002969). MY is grateful to CSIR, MHRD for JRF fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AS conceived the idea, performed the proteomic analysis, supervised the study and contributed to writing, reviewing, editing, and visualization. MY contributed to analyse LC–MS data, performed bioinformatics analysis and wrote the original draft. Both the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Archana Singh.

Ethics declarations

Competing Interests

The authors declare that they have no competing/financial/any other interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Anket Sharma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 97 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Singh, A. Reprogramming of Glycine max (Soybean) Proteome in Response to Spodoptera litura (Common Cutworm)-Infestation. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-023-11232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-023-11232-4

Keywords

Navigation