Skip to main content
Log in

Role of Boron as Priming Agent on Biochemical and Antioxidant System in Two Wheat Varieties Against Heat Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In agriculture, the selection of healthy and vigorous seeds is critical, so seeds must be of high quality. Seed priming is a reliable and commercial strategy for improving seed germination and seedling establishment under stressful conditions, whether biotic or abiotic. Heat stress occurs when temperature rises above a particular point and results in permanent irreversible damage to plants, whereas, heat stress that primarily affects crops during their reproductive or grain-filling stages, is referred as terminal heat stress. The present experiment deals with treating two varieties of wheat (HUW-468: Temperature sensitive and HUW-510: Temperature resistant) using boric acid and borax as priming agents and evaluating their effect on different parameters including biochemical (Hydrogen peroxide, Malondialdehyde, and Proline) and antioxidant parameters (Superoxide dismutase, Catalase, Ascorbate peroxidase, and Glutathione reductase) by sowing them under two different conditions (Timely and Late sown) for evaluating effect of priming agents on heat stress on different days of study. The results obtained indicate that primed seedlings grew better and were more resilient to stress, and this was due in part to lower ROS production, stronger membrane stability, a strong antioxidant defense system, and preservation of a strong and healthy crop stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

APX:

Ascorbate peroxidase

CAT:

Catalase

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

HPX:

Hydrogen peroxide

PRL:

Proline

GR:

Glutathione reductase

PCA:

Principle component analysis

GSH:

Reduced glutathione

HSP:

Heat shock protein

DAS:

Days after sowing

FW:

Fresh weight

XOD:

Xanthine oxidase

MAO:

Monoamine oxidase

References

  • Aebi HE (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. VerlagChemie, Weinheim, pp 273–286

    Google Scholar 

  • Ahmad I, Basra SMA, Hussain S, Hussain SA, Hafeez-ur-Rehman RA, Ali A (2015) Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. J Environ AgricSciSarghoda 3:14–22

    Google Scholar 

  • Akter N, Rafiqul Islam M (2017) Heat stress effects and management in wheat: a review. Agron Sustain Dev 37:1–7. https://doi.org/10.1007/s13593-017-0443-9

    Article  CAS  Google Scholar 

  • Altenbach SB (2012) New insights into the effects of high temperature, drought and post-anthesis fertilizer on wheat grain development. J Cereal Sci 56:39–50. https://doi.org/10.1016/j.jcs.2011.12.012

    Article  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015a) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ SciPollut Res 22:4099–4121

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I (2015b) Cadmium toxicity in maize (Zeamays L.): consequences on antioxidative systems, reactive oxygen species and cad mium accumulation. Environ SciPollut Res 22:17022–17030. https://doi.org/10.1007/s11356-015-4882-z

    Article  CAS  Google Scholar 

  • Asl MB, Taheri G (2012) Survey the effect of seed priming on germination and physiological indices of cotton khordad cultivar. Ann Biol Res 3:1003–1009

    Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Global Change Bio 17:997–1012

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D (2015) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Article  Google Scholar 

  • Bates LS, Waldren RD, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2012) An inductive pulse of hydrogen peroxide pretreatment restores redox-homeostasis and mitigates oxidative membrane damage under extremes of temperature in two rice cultivars (Oryza sativa L., cultivars Ratna and SR 26B). Plant Growth Regul 68:395–410

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2013) Heat and chilling induced disruption of redox homeostasis and its regulation by hydrogen peroxide in germinating rice seeds (Oryza sativa L., cultivar Ratna). Physiol Mol Biol Plants 19:199–207. https://doi.org/10.1007/s12298-012-0159-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose B, Kumar M, Singhal RK, Mondal S (2018) Impact of seed priming on the modulation of physico-chemical and molecular processes during germination, growth, and development of crops. Advances in seed priming. Springer, Singapore, pp 23–40

    Google Scholar 

  • Bozca FD, Leblebici S (2022) Interactive effect of boric acid and temperature stress on phenological characteristics and antioxidant system in Helianthus annuus L. S Afr J Bot 147:391–99

    Article  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168(3):511–528. https://doi.org/10.1111/j.1469-8137.2005.01548.x

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Bose B (2020) Effects of magnesium nitrate and boric acid on germination and seedling growth parameters of wheat (Triticumaestivum L.) var. HUW-468. J PharmacognPhytochem 9(4):804–808

    CAS  Google Scholar 

  • Chakraborty P, Dwivedi P (2021) Seed priming and its role in mitigating heat stress responses in crop plants. J Plant Nutr Soil Sci 21:1718–1734

    Article  CAS  Google Scholar 

  • Chen H, Chu P, Zhou Y, Li Y et al (2012) Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot 63(11):4107–4121. https://doi.org/10.1093/jxb/ers093

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Guo C, Hussain S, Zhu B, Deng F, Xue Y, Geng M, Wu L (2016) Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environ SciPollut Res 23:1254–1264. https://doi.org/10.1007/s11356-015-5361-2

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Forti C, Shankar A, Singh A, Balestrazzi A, Prasad V, Macovei A (2020) Hydropriming and biopriming improve Medicagotruncatula seed germination and upregulate DNA repair and antioxidant genes. Genes 11(3):242. https://doi.org/10.3390/genes11030242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126(2):835–48. https://doi.org/10.1104/pp.126.2.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Sharma SK (2006) Plants as natural antioxidants. Nat Prod Radiance 5(4):326–334

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M (2013) Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant SciMol Breed 2:1–14

    Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439. https://doi.org/10.3389/fpls.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40:68

    Article  Google Scholar 

  • Hussain HA, Men S, Hussain S, Zhang Q, Ashraf U, Anjum SA, Ali I, Wang L (2020) Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants 9:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutr 30:381–396

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah MA (2017) Impacts of heat stress on wheat: a critical review. Adv Crop Sci Tech 5(1):1–9

    Article  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-efective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253(2):277–89. https://doi.org/10.1007/s00709-015-0804-7

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam A, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Plant Sci 3:13. https://doi.org/10.3389/fenvs.2015.00013

    Article  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, Rehman H (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Element Res 166:236–244

    Article  CAS  Google Scholar 

  • Khan F, Hussain S, Khan S, Geng M (2020) Seed priming improved antioxidant defense and alleviated Ni-induced adversities in rice seedlings under N, P, or K deprivation. Front Plant Sci 11:565647. https://doi.org/10.3389/fpls.2020.565647

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12. https://doi.org/10.1016/j.jplph.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6(12):1130–1136

    Article  Google Scholar 

  • Macovei A, Balestrazzi A, Confalonieri M, Carbonera D (2010) The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn.: Bioinformatic investigation and expression profiles in response to copper-and PEG-mediated stress. Planta 232(2):393–407. https://doi.org/10.1007/s00425-010-1179-9

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973. https://doi.org/10.1007/s10646-013-1073-x

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Yoshida N, Fujita M (2014) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73(1):31–44

    Article  CAS  Google Scholar 

  • Mukherjee SP, Choudhury MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26:58–73

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Rahman K, Sathi KS, Alam MM, Nahar K, Fujita M, Hasanuzzaman M (2021) Supplemental selenium and boron mitigate salt-induced oxidative damages in Glycine max L. Plants 10:2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghian SY, Yavari N (2004) Effect of water-deficit stress on germination and early seedling growth in sugar beet. J Agron Crop Sci 190:138–144

    Article  Google Scholar 

  • Sattar A, Sher A, Ijaz M et al (2020) Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 15:e0232974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, Hanumantharao B, Nair RM, Prasad PV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1–19. https://doi.org/10.3389/fpls.2018.01705

    Article  CAS  Google Scholar 

  • Shahid M, Nayak AK, Tripathi R, Katara JL, Bihari P, Lal B, Gautam P (2018) Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages. Int J Biometeorol 62:1375–1387. https://doi.org/10.1007/s00484-018-1537-z

    Article  PubMed  Google Scholar 

  • Singh P, Dwivedi P (2015) Morphophysiological responses of wheat (Triticum aestivum L.) genotypes under late sown condition. Soc Plant Res 28:16–25

    Google Scholar 

  • Singh P, Dwivedi P, Srivastava JP (2014) Response of biochemical, yield and yield components of wheat (Triticum aestivum L.) genotypes as affected by different sowing dates. Plant Res 27:149–157

    Google Scholar 

  • Singhal RK, Pandey S, Bose B (2021) Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress 2:100037

    Article  CAS  Google Scholar 

  • Siri B, Vichitphan K, Kaewnaree P, Vichitphan S, Klanrit P (2013) Improvement of quality, membrane integrity and antioxidant systems in sweet pepper (Capsicum annuum L.) seeds affected by osmopriming. Aust J Crop Sci 7:2068–2073

    Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55:195–200

    Article  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro, chemo, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(6):1135–44. https://doi.org/10.1007/s11738-010-0505-y

    Article  Google Scholar 

  • Tavallali V, Karimi S, Espargham O (2017) Boron enhances antioxidative defense in the leaves of salt-affected Pistaciavera seedlings. Hortic J 87:55–62. https://doi.org/10.2503/hortj.OKD-062

    Article  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616. https://doi.org/10.1016/j.cell.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. ChemBiol Interact 160:1–40

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vibhuti CS, Bargali K, Bargali SS (2015) Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian J Agric Sci 85:102–108

    Article  Google Scholar 

  • Wang Y, Zhang J, Li J-L, Ma X-R (2014) Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36:2915–2924. https://doi.org/10.1007/s11738-014-1661-2

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244. https://doi.org/10.4067/S0718-95162012000200003

    Article  Google Scholar 

  • Xia FS, Wang F, Wang YC, Wang CC, Tian R, Ma JY, Zhu HS, Dong KH (2020) Influence of boron priming on the antioxidant ability of alfalfa seeds. Leg Res 43:788–793

    Google Scholar 

  • Yi XP, Zhang YL, Yao HS, Luo HH, Gou L, Chow WS, Zhang WF (2016) Rapid recovery of photosynthetic rate following soil water defcit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. J Plant Physiol 194:23–34. https://doi.org/10.1016/j.jplph.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C (2014) Year patterns of climate impact on wheat yields. Int J Climatol 34:518–528

    Article  Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y et al (2015) Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One 10:e0140620. https://doi.org/10.1371/journal.pone.0140620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang QW, Peng SB, Huang JL, Cui KH, Nie LX (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, for providing all necessary laboratory equipments during the experiment period.

Funding

There is no funding agency involved.

Author information

Authors and Affiliations

Authors

Contributions

PC conducted experiments and wrote the initial draft of the manuscript. PD supervised, reviewed and edited the manuscript.

Corresponding author

Correspondence to Padmanabh Dwivedi.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Vinay Kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Dwivedi, P. Role of Boron as Priming Agent on Biochemical and Antioxidant System in Two Wheat Varieties Against Heat Stress. J Plant Growth Regul 42, 7530–7546 (2023). https://doi.org/10.1007/s00344-023-11029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11029-5

Keywords

Navigation