Skip to main content
Log in

Salicylic Acid and Methyl Jasmonate Synergistically Ameliorate Salinity Induced Damage by Maintaining Redox Balance and Stomatal Movement in Potato

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2023

This article has been updated

Abstract

Susceptibility of plants to salinity stress is a looming threat to crop productivity worldwide, thereby warranting the strategies to counter stress. We investigated the effects of combined foliar treatment with salicylic acid (SA) and methyl jasmonate (MeJA) on the growth and development of two elite varieties of potato under salinity stress. The salinity stress manifested membrane damage, electrolyte leakage, and production of H2O2 and free radical superoxide anion. Application of SA or MeJA individually could not significantly improve the performance of potato plants exposed to salinity stress. However, treatment with combinations of SA and MeJA synergistically mitigated the adverse effects of salinity, as reflected by reduced membrane damage and electrolyte leakage and lower accumulation of H2O2 and free radical superoxide anion. Moreover, plants treated with the combination treatment had higher relative water content and redox pools of ascorbate and glutathione under salinity stress. The treatment promoted the accumulation of K+ and lowered the Na+ content. SA and MeJA synergistically enhanced the activities of the antioxidant enzymes in the Halliwell-Asada pathway and modulated the photosynthetic and transpiration rates. Overall, our results indicate that the combined foliar treatments with SA and MeJA have positive effects on the growth, development, and yield of potato through maintenance of ion homeostasis and photosynthetic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Abdelaal KA, El-Maghraby LM, Elansary H et al (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10(1):26

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol. 105:121–126

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA et al (2019) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, AbassAhanger M, Nasser Alyemeni M et al (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    CAS  Google Scholar 

  • Ahmadi FI, Karimi K, Struik PC (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S Afr J Bot 115:5–11

    CAS  Google Scholar 

  • Akhter MS, Noreen S, Mahmood S et al (2021) Influence of salinity stress on PSII in barley (Hordeum vulgare L) genotypes, probed by chlorophyll-a fluorescence. J King Saud Univ-Sci 33(1):101239

    Google Scholar 

  • Alamer KH, Fayez KA (2020) Impact of salicylic acid on the growth and physiological activities of parsley plants under lead toxicity. Physiol Mol Biol Plants 26:1361–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambastha V, Chauhan G, Tiwari BS, Tripathy BC (2020) Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. Protoplasma 257:841–851

    CAS  PubMed  Google Scholar 

  • Anjum SA, Farooq M, Xie XY et al (2012) Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci Hortic 140:66–73

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astacio MG, Iersel MW (2011) Determining the effects of abscisic acid drenches on evapotranspiration and leaf gas exchange of tomato. HortScience 46:1512–1517

    Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 1:205–207

    Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    CAS  PubMed  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112(2–3):119–123

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Cantoro R, Crocco CD, Benech-Arnold RL et al (2013) In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy. J Exp Bot 64(18):5721–5735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cenzano A, Vigliocco A, Kraus T et al (2003) Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Ann Bot 91:915–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Miao W, Fei K et al (2021) Jasmonates alleviate the harm of high-temperature stress during anthesis to stigmaity of photothermosensitive genetic male sterile rice lines. Front Plant Sci 12:412

    Google Scholar 

  • Csiszár J, Brunner S, Horváth E et al (2018) Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regul 86:181–194

    Google Scholar 

  • Dehnavi AR, Zahedi M, Razmjoo J, Eshghizadeh H (2019) Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J Plant Nutr 42:1333–1449

    Google Scholar 

  • Do H, Kim IS, Jeon BW et al (2016) Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica. Sci Rep 6(1):1–13

    Google Scholar 

  • El-Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    PubMed  PubMed Central  Google Scholar 

  • Fang S, Hou X, Liang X (2021) Response mechanisms of plants under saline-alkali stress. Front Plant Sci 12:1049

    Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    CAS  PubMed  Google Scholar 

  • Feizi H, Moradi R, Pourghasemian N, Sahabi H (2021) Assessing saffron response to salinity stress and alleviating potential of gamma amino butyric acid, salicylic acid and vermi compost extract on salt damage. S Afr J Bot 141:330–343

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Gao S, Li P et al (2021) Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr. Physiol Plant 172(1):162–175

    CAS  PubMed  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2(4):871–874

    CAS  PubMed  Google Scholar 

  • GokulA RE, Klein A, Keyster M (2016) Exogenous 3,3′-diindolylmethane increases Brassica napus L. seedling shoot growth through modulation of superoxide and hydrogen peroxide content. J Plant Physiol 196:93–98

    Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212

    CAS  PubMed  Google Scholar 

  • Hamani AKM, Wang G, Soothar MK et al (2020) Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol 20:434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer-Verlag, Berlin Heidelberg, pp 49–76

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI et al (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni M et al (2012) Behavior Role of proline under changing environments. Plant Signal Behav 7:1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Ahmad H, Ali M et al (2018) Aqueous garlic extract as a plant biostimulant enhances physiology, improves crop quality and metabolite abundance, and primes the defense responses of receiver plants. Appl Sci 8(9):1505

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Google Scholar 

  • Hiner AN, Rodriguez-Lopez JN, Arnao MB et al (2000) Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochem J 348(2):321–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hniličková H, Hnilička F, Orsák M (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65(2):90–96

    Google Scholar 

  • Hnilickova H, Kraus K, Vachova P et al (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10(5):845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plant without soil. California Agri. Exp. Sta. Cir. No. 347. University of California Berkley Press, CA, p 347.

  • Huang H, Liu B, Liu L et al (2017) Jasmonate action in plant growth and development. J Exp Bot 68(6):1349–1359

    CAS  PubMed  Google Scholar 

  • Huez-Lopez MA, Ulery AL, Samani Z et al (2011) Response of chili pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: II. Nitrogen and water use efficiencies, and salt tolerance. Trop Subtrop Agroecosyst 14:757–763

    Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A Br). Agric Food Secur 7(1):1–14

    Google Scholar 

  • Jaarsma R, De Boer AH (2018) Salinity tolerance of two potato cultivars (Solanum tuberosum) correlates with differences in vacuolar transport activity. Front Plant Sci 9:737

    PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signalling. Physiol Plant 138:405–413

    CAS  PubMed  Google Scholar 

  • Jat HS, Kumar V, Datta A et al (2020) Designing profitable, resource use efficient and environmentally sound cereal-based systems for the Western Indo-Gangetic plains. Sci Rep 10:19267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khaleghi A, Naderi R, Brunetti C, Maserti BE et al (2019) Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci Rep 9(1):1–12

    Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khushboo BK, Singh P, Raina M, Sharma V, Kumar D (2018) Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cell Dev Biol-Plant 54:495–507

    CAS  Google Scholar 

  • Kim SK, Sohn EY, Joo GJ, Lee IJ (2009) Influence of jasmonic acid on endogenous gibberellin and abscisic acid in salt-stressed chard plant. J Environ Biol 30(3):333–338

    CAS  PubMed  Google Scholar 

  • Koch M, Naumann M, Pawelzik E et al (2020) The importance of nutrient management for potato production Part I: plant nutrition and yield. Potato Res 63(1):97–119

    Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food security in India. Front Sustain Food Syst 4:533781

    Google Scholar 

  • Kumar D, Yusuf MA, Singh P et al (2013) Modulation of antioxidant machinery in α-tocopherol enriched transgenic Brassica juncea plants tolerant to abiotic stress condition. Protoplasma 250:1079–1089

    CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2014a) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protoc 4(8):e1108–e1108

    Google Scholar 

  • Kumar N, Chhokar RS, Meena RP et al (2021) Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. Cereal Research Communication 8:1–29

    Google Scholar 

  • Kumar V, Luthra SK, Bhardwaj V, Singh BP (2014b) Indian Potato Varieties and their Salient Features. CPRI Technical Bulletin No. 78 (revised) ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.

  • Kusumi K (2013) Measuring stomatal density in rice. Bio-Protocol 3(9):e753

    Google Scholar 

  • Li T, Hu Y, Du X et al (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLOS One 9(10):e109492

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang Y, Yuan X et al (2016) Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russ J Plant Physiol 63(1):132–142

    CAS  Google Scholar 

  • Ma X, Zheng J, Zhang X et al (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    PubMed  PubMed Central  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth: management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Google Scholar 

  • Mahajan A, Raina M, Tanvir SE et al (2020) Phytohormones: a promising alternative in boosting salinity stress tolerance in plants. In: Giri B, Sharma MP (eds) Plant stress biology—strategies and trends. Springer Nature, Singapore

    Google Scholar 

  • Mahlooji M, Sharifi RS, Razmjoo J et al (2018) Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56(2):549–556

    CAS  Google Scholar 

  • Mao X, Zhang H, Tian S et al (2010) TaSnRK2.4, an SNF1-type serine/ threonine protein kinase of wheat (Triticum aestivum L.) confers enhanced multi stress tolerance in Arabidopsis. J Exp Bot 61:683–696

    CAS  PubMed  Google Scholar 

  • Meena M, Divyanshu K, Kumar S et al (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5(12):e02952

    PubMed  PubMed Central  Google Scholar 

  • Meguro A, Sato Y (2014) Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 4(1):1–11

    Google Scholar 

  • Mimouni H, Wasti S, Manaa A et al (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: J Integr Biol 20(3):180–190

    CAS  Google Scholar 

  • Mir MA, John R, Alyemeni MN et al (2018) Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Sci Rep 8(1):1–13

    Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169(2):331–339

    CAS  Google Scholar 

  • Mohi-Ud-Din M, Talukder D, Rohman M et al (2021) Exogenous application of methyl jasmonate and salicylic acid mitigates drought induced oxidative damages in French bean (Phaseolus vulgaris L.). Plants 10:2066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Funct Plant Biol 22(4):561–569

    CAS  Google Scholar 

  • Munns R, Wallace PA, Teakle NL et al (2010) Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. In: Sunkar R (ed) Plant stress tolerance. Humana Press, pp 371–382

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nadarajah K, Abdul Hamid NW, Abdul Rahman NSN (2021) SA-mediated regulation and control of abiotic stress tolerance in rice. Int J Mol Sci 22(11):5591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nazarli H, Ahmadi A, Hadian J (2014) Salicylic acid and methyl jasmonate enhance drought tolerance in chamomile plants. J HerbMed Pharmacol 3(2):87–92

    Google Scholar 

  • NiuM XJ, Chen C et al (2018) An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. J Exp Bot 69:4945–4960

    Google Scholar 

  • Parveen A, Arslan Ashraf M, Hussain I et al (2021) Promotion of growth and physiological characteristics in water-stressed Triticum aestivum in relation to foliar-application of salicylic acid. Water 13(9):1316

    CAS  Google Scholar 

  • Pasternak T, Groot EP, Kazantsev FV et al (2019) Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol 180(3):1725–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polash MAS, Sakil MA, Tahjib M et al (2018) Effect of salinity on osmolytes and relative water content of selected rice genotypes. Trop Plant Res 5(2):227–232

    Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Mill sp. seedlings under copper stress. Am J Plant Sci 4:817–823

    Google Scholar 

  • Pradel MG, Hareau G, Pandey SK, Bhardway V (2019) Adoption of potato varieties and their role for climate change adaptation in India. Clim Risk Manag 23:114–123

    PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L et al (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    CAS  PubMed  Google Scholar 

  • Qiu X, Xu Y, Xiong B et al (2020) Effects of exogenous methyl jasmonate on the synthesis of endogenous jasmonates and the regulation of photosynthesis in citrus. Physiol Plant 170(3):398–414

    CAS  PubMed  Google Scholar 

  • Quamruzzaman M, Manik SM, Shabala S et al (2021) Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules 11(6):788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quarrie SA, Whitford PN, Appleford NEJ et al (1988) A monoclonal antibody to (S)-abscisic acid: its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173:330–339

    CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Lee IJ (2013) Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiologia Plantarum 35(12):3315–3322

    CAS  Google Scholar 

  • Raina M, Kumar A, Yadav N, Kumari S, Yusuf MA, Mustafiz A, Kumar D (2021) StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in Tobacco. Plant Mol Biol 106(1–2):85–108

    CAS  PubMed  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environment 32(3):237–249

    CAS  PubMed  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Google Scholar 

  • Saheri F, Barzin G, Pishkar L et al (2020) Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia 75(12):2189–2200

    Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162(6):897–904

    CAS  Google Scholar 

  • Samantha P, Kumari B, Dubey RS (2013) Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in Indica rice seedlings. Plant Growth Regul 69(2):149–165

    Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Google Scholar 

  • Shankar T, Singh KM, Kumar A (2014) Cultivation and processing of potato in Bihar: issues and strategies. Environ Ecol 32:1647–1652

    Google Scholar 

  • Shao Q, Wang H, Guo H et al (2014) Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus Roxburghii. PLoS ONE 9:e85996

    PubMed  PubMed Central  Google Scholar 

  • Shekhar S, Rustagi A, Kumar D, Yusuf MA, Sarin NB (2019) Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate–glutathione pathway. Physiol Mol Biol Plants 25(6):1349–1366

    PubMed  PubMed Central  Google Scholar 

  • Signorelli S (2016) The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front Plant Sci 7:1339

    PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Mushtaq R, Gill SS et al (2020) Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L. Sci Rep 10:9322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77(3):449–456

    CAS  Google Scholar 

  • Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biol Technol Agric 6(1):1–7

    Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169(6):577–585

    CAS  PubMed  Google Scholar 

  • Tahjib-UI-Arif M, Sohag AAM, Afrin S et al (2019) Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture 9(10):223

    CAS  Google Scholar 

  • Taj Z, Challabathula D (2021) Protection of photosynthesis by halotolerant Staphylococcus Sciuri ET101 in tomato (Lycoperiscon esculentum) and rice (Oryza sativa) plants during salinity stress: possible interplay between carboxylation and oxygenation in stress mitigation. Front Microbiol 11:3232

    Google Scholar 

  • Tavallali V, Karimi S (2019) Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. J Plant Physiol 234:98–105

    PubMed  Google Scholar 

  • Tayyab N, Naz R, Yasmin H et al (2020) Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE 15(5):e0232269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolessa ES (2018) Importance, nutrient content and factors affecting nutrient content of potato. Am J Food Nutr Health 3(3):37–41

    Google Scholar 

  • Torun H, Novák O, Mikulík J et al (2020) Timing-dependent effects of salicylic acid treatment on phytohormonal changes, ROS regulation, and antioxidant defense in salinized barley (Hordeum vulgare L). Sci Rep 10(1):1–17

    Google Scholar 

  • Ullah C, Schmidt A, Reichelt M et al (2022) Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytol 235:1–17

    Google Scholar 

  • Vafadar F, Amooaghaie R, Ehsanzadeh P et al (2020) Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum Kotschyi Boiss. Biologia 75(12):2147–2158

    Google Scholar 

  • Wang J, Song L, Gong X et al (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav T, Kumar A, Yadav RK et al (2020) Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J Biol Sci 27(8):2010–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V et al (2017) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23(1):43–58

    CAS  PubMed  Google Scholar 

  • Yin C, Peng Y, Zang R et al (2005) Adaptive responses of Populus kangdingensis to drought stress. Physiol Plant 123(4):445–451

    CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK et al (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Google Scholar 

  • Zafar Z, Rasheed F, Atif RM et al (2021) Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L and Populus deltoides L saplings: evidence from morphological, physiological, and biochemical changes. Plants 10(6):1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang Q, Zhai H et al (2017) Transcript profile analysis reveals important roles of jasmonic acid signaling pathway in the response of sweet potato to salt stress. Sci Rep 7(1):1–12

    Google Scholar 

  • Zhao Y, Gao J, Kim JI et al (2017) Control of plant water use by ABA induction of senescence and dormancy: an overlooked lesson from evolution. Plant Cell Physiol 58:1319–1327

    CAS  PubMed  Google Scholar 

  • ZhaoC ZH, Song C, Zhu JK, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation 1(1):100017

    Google Scholar 

Download references

Acknowledgements

DK acknowledges University Grants Commission (UGC) Start-Up Research Grant [No.F.30-352/2017(BSR); FD Diary No.6668] India, for providing financial support for this work. Department of Botany, Central University of Jammu and Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University and Institute of Eminence (IoE) seed grant (Dev. No. 6031 (B), Banaras Hindu University for providing financial support to the laboratory and necessary facilities and infrastructural support. DK also acknowledges Science and Engineering Research Board, (Grant No-EEQ/2016/000487 and EEQ/2021/000593) for providing financial support to the laboratory.

Funding

This study is supported by the University Grants Commission Start-Up-Research Grant, No. F.30-352/2017 (BSR) and Science and Engineering Research Board, EEQ/2016/000487 and EEQ/2021/000593 to Deepak Kumar

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration among all the authors. DK conceived and designed the research. SS, AM, MR conducted the experiments and analysed the data. PP performed the statistical analyses used in the manuscript. SS, MR, AM and DK wrote the manuscript, and AR, PP, RP and DK analyzed the data and provided valuable input and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Deepak Kumar.

Ethics declarations

Competing interest

The authors have declared that no competing interests exist.

Additional information

Handling Editor: M. Naeem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Mahajan, A., Pandey, P. et al. Salicylic Acid and Methyl Jasmonate Synergistically Ameliorate Salinity Induced Damage by Maintaining Redox Balance and Stomatal Movement in Potato. J Plant Growth Regul 42, 4652–4672 (2023). https://doi.org/10.1007/s00344-023-10956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10956-7

Keywords

Navigation